Reserve Flux Capacity in the Pentose Phosphate Pathway Enables Escherichia coli's Rapid Response to Oxidative Stress

被引:134
作者
Christodoulou, Dimitris [1 ,2 ]
Link, Hannes [1 ,3 ]
Fuhrer, Tobias [1 ]
Kochanowski, Karl [1 ,4 ]
Gerosa, Luca [1 ,5 ]
Sauer, Uwe [1 ]
机构
[1] ETH, Inst Mol Syst Biol, Zurich, Switzerland
[2] Syst Biol Grad Sch, CH-8057 Zurich, Switzerland
[3] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[4] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA
[5] Harvard Med Sch, Program Therapeut Sci, Lab Syst Pharmacol, Boston, MA 02115 USA
关键词
CENTRAL CARBON METABOLISM; REGULATORY NETWORKS; GENE-EXPRESSION; MECHANISMS; DYNAMICS; MODELS; GLUCOSE-6-PHOSPHATE-DEHYDROGENASE; IDENTIFICATION; TRANSCRIPTION; TRANSITION;
D O I
10.1016/j.cels.2018.04.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To counteract oxidative stress and reactive oxygen species (ROS), bacteria evolved various mechanisms, primarily reducing ROS through antioxidant systems that utilize cofactor NADPH. Cells must stabilize NADPH levels by increasing flux through replenishing metabolic pathways like pentose phosphate (PP) pathway. Here, we investigate the mechanism enabling the rapid increase in NADPH supply by exposing Escherichia coli to hydrogen peroxide and quantifying the immediate metabolite dynamics. To systematically infer active regulatory interactions governing this response, we evaluated ensembles of kinetic models of glycolysis and PP pathway, each with different regulation mechanisms. Besides the known inactivation of glyceraldehyde 3-phosphate dehydrogenase by ROS, we reveal the important allosteric inhibition of the first PP pathway enzyme by NADPH. This NADPH feedback inhibition maintains a below maximum-capacity PP pathway flux under non-stress conditions. Relieving this inhibition instantly increases PP pathway flux upon oxidative stress. We demonstrate that reducing cells' capacity to rapidly reroute their flux through the PP pathway increases their oxidative stress sensitivity.
引用
收藏
页码:569 / +
页数:17
相关论文
共 56 条
  • [1] Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses
    Anastasiou, Dimitrios
    Poulogiannis, George
    Asara, John M.
    Boxer, Matthew B.
    Jiang, Jian-kang
    Shen, Min
    Bellinger, Gary
    Sasaki, Atsuo T.
    Locasale, Jason W.
    Auld, Douglas S.
    Thomas, Craig J.
    Vander Heiden, Matthew G.
    Cantley, Lewis C.
    [J]. SCIENCE, 2011, 334 (6060) : 1278 - 1283
  • [2] Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1
    Arai, Hiroyuki
    Roh, Jung Hyeob
    Kaplan, Samuel
    [J]. JOURNAL OF BACTERIOLOGY, 2008, 190 (01) : 286 - 299
  • [3] Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection
    Baba, Tomoya
    Ara, Takeshi
    Hasegawa, Miki
    Takai, Yuki
    Okumura, Yoshiko
    Baba, Miki
    Datsenko, Kirill A.
    Tomita, Masaru
    Wanner, Barry L.
    Mori, Hirotada
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) : 2006.0008
  • [4] Topological sensitivity analysis for systems biology
    Babtie, Ann C.
    Kirk, Paul
    Stumpf, Michael P. H.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) : 18507 - 18512
  • [5] Rapid Changes in Gene Expression Dynamics in Response to Superoxide Reveal SoxRS-Dependent and Independent Transcriptional Networks
    Blanchard, Jeffrey L.
    Wholey, Wei-Yun
    Conlon, Erin M.
    Pomposiello, Pablo J.
    [J]. PLOS ONE, 2007, 2 (11):
  • [6] Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli -: Changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III)
    Brumaghim, JL
    Li, Y
    Henle, E
    Linn, S
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (43) : 42495 - 42504
  • [7] Escherichia coli Genes and Pathways Involved in Surviving Extreme Exposure to Ionizing Radiation
    Byrne, Rose T.
    Chen, Stefanie H.
    Wood, Elizabeth A.
    Cabot, Eric L.
    Cox, Michael M.
    [J]. JOURNAL OF BACTERIOLOGY, 2014, 196 (20) : 3534 - 3545
  • [8] Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA
    Canonaco, F
    Hess, TA
    Heri, S
    Wang, TT
    Szyperski, T
    Sauer, U
    [J]. FEMS MICROBIOLOGY LETTERS, 2001, 204 (02) : 247 - 252
  • [9] Dynamic modeling of the central carbon metabolism of Escherichia coli
    Chassagnole, C
    Noisommit-Rizzi, N
    Schmid, JW
    Mauch, K
    Reuss, M
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (01) : 53 - 73
  • [10] Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network
    Chechik, Gal
    Oh, Eugene
    Rando, Oliver
    Weissman, Jonathan
    Regev, Aviv
    Koller, Daphne
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (11) : 1251 - 1259