On the existence of optimal consensus control for the fractional Cucker-Smale model

被引:6
|
作者
Almeida, R. [1 ]
Kamocki, R. [2 ]
Malinowska, A. B. [3 ]
Odzijewicz, T. [4 ]
机构
[1] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Lodz, Fac Math & Comp Sci, PL-90238 Lodz, Poland
[3] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[4] SGH Warsaw Sch Econ, Dept Math & Math Econ, PL-02554 Warsaw, Poland
关键词
fractional calculus; fractional differential systems; flocking model; consensus; optimal control; EMERGENT BEHAVIOR; FLOCKING;
D O I
10.24425/acs.2020.135844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the nonlinear Cucker-Smale optimal control problem under the interplay of memory effect. The aforementioned effect is included by employing the Caputo fractional derivative in the equation representing the velocity of agents. Sufficient conditions for the existence of solutions to the considered problem are proved and the analysis of some particular problems is illustrated by two numerical examples.
引用
收藏
页码:625 / 651
页数:27
相关论文
共 50 条
  • [1] Optimal consensus control of the Cucker-Smale model
    Bailo, Rafael
    Bongini, Mattia
    Carrillo, Jose A.
    Kalise, Dante
    IFAC PAPERSONLINE, 2018, 51 (13): : 1 - 6
  • [2] SPARSE STABILIZATION AND OPTIMAL CONTROL OF THE CUCKER-SMALE MODEL
    Caponigro, Marco
    Fornasier, Massimo
    Piccoli, Benedetto
    Trelat, Emmanuel
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (04) : 447 - +
  • [3] On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem
    Almeida, Ricardo
    Kamocki, Rafal
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [4] CONTROL TO FLOCKING OF THE KINETIC CUCKER-SMALE MODEL
    Piccoli, Benedetto
    Rossi, Francesco
    Trelat, Emmanuel
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (06) : 4685 - 4719
  • [5] On the Fractional Variable Order Cucker-Smale Type Model
    Girejko, Ewa
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    IFAC PAPERSONLINE, 2018, 51 (04): : 693 - 697
  • [6] EMERGENCE OF ANOMALOUS FLOCKING IN THE FRACTIONAL CUCKER-SMALE MODEL
    Ha, Seung-yeal
    Jung, Jinwook
    Kuchling, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (09) : 5465 - 5489
  • [7] From discrete Cucker-Smale model to continuous Cucker-Smale model in a temperature field
    Dong, Jiu-Gang
    Ha, Seung-Yeal
    Kim, Doheon
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [8] On the multi-cluster flocking of the fractional Cucker-Smale model
    Ahn, Hyunjin
    MATHEMATICS IN ENGINEERING, 2024, 6 (04): : 607 - 647
  • [9] Behaviour of the fractional Cucker-Smale type model for a couple of agents
    Girejko, Ewa
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, : 746 - 751
  • [10] Robustness of Cucker-Smale flocking model
    Canale, Eduardo
    Dalmao, Federico
    Mordecki, Ernesto
    Souza, Max O.
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (03): : 346 - 350