Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer

被引:64
作者
Halmer, D. [1 ]
Thelen, S. [1 ]
Hering, P. [1 ]
Muertz, M. [1 ]
机构
[1] Univ Dusseldorf, Inst Lasermed, D-40225 Dusseldorf, Germany
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2006年 / 85卷 / 2-3期
关键词
D O I
10.1007/s00340-006-2288-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report a transportable mid-infrared laser cavity leak-out spectrometer for online detection of trace gases. The laser spectrometer is based on continuous-wave difference-frequency generation in the wavelength region around 3 mu m. Sensitive spectroscopic trace gas monitoring was achieved using a high-finesse ring-down cavity. For difference-frequency generation, we use a periodically poled lithium niobate (PPLN) crystal, pumped by a Nd:YAG laser (signal wave) and a diode laser (pump wave) with a tapered amplifier. A maximum power of 280 mu W near lambda=3.3 mu m is achieved using a pump power of 180 mW at 807 nm, a signal power of 890 mW at 1064.46 nm, and a 50-mm-long PPLN crystal. The resulting system proved to be a unique tool with high sensitivity and specificity for rapid and precise breath testing. We demonstrate spectroscopic online monitoring of ethane traces in exhaled human breath with a precision of 270 parts per trillion (1 sigma) and a time resolution of 1 s.
引用
收藏
页码:437 / 443
页数:7
相关论文
共 21 条
[1]   Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane [J].
Clark, HY ;
Corner, L ;
Denzer, W ;
Hancock, G ;
Hutchinson, A ;
Islam, M ;
Peverall, R ;
Ritchie, GAD .
CHEMICAL PHYSICS LETTERS, 2004, 399 (1-3) :102-108
[2]   Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy [J].
Dahnke, H ;
Kleine, D ;
Hering, P ;
Mürtz, M .
APPLIED PHYSICS B-LASERS AND OPTICS, 2001, 72 (08) :971-975
[3]   A validated method for rapid analysis of ethane in breath and its application in kinetic studies in human volunteers [J].
Dale, O ;
Bergum, H ;
Lund, T ;
Nilsen, T ;
Aadahl, P ;
Stenseth, R .
FREE RADICAL RESEARCH, 2003, 37 (08) :815-821
[4]   Trace moisture detection using continuous-wave cavity ring-down spectroscopy [J].
Dudek, JB ;
Tarsa, PB ;
Velasquez, A ;
Wladyslawski, M ;
Rabinowitz, P ;
Lehmann, KK .
ANALYTICAL CHEMISTRY, 2003, 75 (17) :4599-4605
[5]   Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system [J].
Fischer, C ;
Sigrist, MW .
APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 75 (2-3) :305-310
[6]   Fast exponential fitting algorithm for real-time instrumental use [J].
Halmer, D ;
von Basum, G ;
Hering, P ;
Mürtz, M .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (06) :2187-2191
[7]   High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser [J].
He, YB ;
Hippler, M ;
Quack, M .
CHEMICAL PHYSICS LETTERS, 1998, 289 (5-6) :527-534
[8]   Portable fiber-coupled diode-laser-based sensor for multiple trace gas detection [J].
Lancaster, DG ;
Richter, D ;
Tittel, FK .
APPLIED PHYSICS B-LASERS AND OPTICS, 1999, 69 (5-6) :459-465
[9]   A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy [J].
Maddaloni, P ;
Gagliardi, G ;
Malara, P ;
De Natale, P .
APPLIED PHYSICS B-LASERS AND OPTICS, 2005, 80 (02) :141-145
[10]   Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm [J].
Malara, P ;
Maddaloni, P ;
Gagliardi, G ;
De Natale, P .
OPTICS EXPRESS, 2006, 14 (03) :1304-1313