共 50 条
A theoretical study on the reaction mechanism and kinetics of allyl alcohol (CH2 = CHCH2OH) with ozone (O3) in the atmosphere
被引:20
作者:
Elakiya, C.
[1
]
Shankar, R.
[1
]
Vijayakumar, S.
[2
]
Kolandaivel, P.
[1
]
机构:
[1] Bharathiar Univ, Dept Phys, Coimbatore, Tamil Nadu, India
[2] Bharathiar Univ, Dept Med Phys, Coimbatore, Tamil Nadu, India
关键词:
Allyl alcohol;
ozone;
criegee intermediate;
rate constant;
atmospheric implications;
CRIEGEE INTERMEDIATE CH2OO;
GAS-PHASE REACTIONS;
MAIN-GROUP THERMOCHEMISTRY;
TRANSITION-STATE THEORY;
OH RADICALS;
RATE COEFFICIENTS;
THERMAL-DECOMPOSITION;
FUKUI FUNCTION;
OXIDATION;
DEGRADATION;
D O I:
10.1080/00268976.2017.1292012
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Volatile organic compounds (VOCs) play a major role in the physical and chemical process of the tropospheric chemical reactions in both polluted and remote environments. A theoretical work has been presented on the VOC of allyl alcohol with O-3 molecule is investigated using density functional theory methods. The reaction profile is initiated through the cycloaddition of ozone which leads to the formation of primary ozonide with minimal relative energy barrier of 1.31 kcal/mol which decomposes to form carbonyl molecule and carbonyl oxide. Carbonyl oxide, i. e. criegee intermediates reacts with various atmospheric species to produce more hazardous and toxic end products to the environment. The condensed form of Fukui function was calculated to predict reactive sites of the primary and secondary reaction profile. The rate coefficient using CVT with SCT over the temperature range of 258-358K is analysed and also to study the atmospheric effects of allyl alcohol in the atmosphere. The predicted rate coefficient for the favourable reaction pathway of k(p1) found to be 1.190 x 10(-15) cm(3)/molecule/sec and comparable with the experimental result at 298 K. The atmospheric lifetime of allyl alcohol was found to be around 10 hours in addition to that global warming potentials are compared with the CO2.
引用
收藏
页码:895 / 911
页数:17
相关论文
共 50 条