Energy image density property and the lent particle method for Poisson measures

被引:16
作者
Bouleau, Nicolas [1 ]
Denis, Laurent [2 ]
机构
[1] Ecole Ponts, F-77455 Marne La Vallee 2, France
[2] Univ Evry Val Essonne, Equipe Anal & Probabilites, F-91025 Evry, France
关键词
Poisson functionals; Dirichlet forms; Energy image density; Levy processes; Gradient; CONFIGURATION-SPACES; STOCHASTIC INTEGRALS; DIRICHLET FORMS; FUNCTIONALS; CALCULUS; GEOMETRY;
D O I
10.1016/j.jfa.2009.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new approach to absolute continuity of laws of Poisson functionals. It is based on the energy image density property for Dirichlet forms. The associated gradient is a local operator and gives rise to a nice formula called the lent particle method which consists in adding a particle and taking it back after some calculation. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1144 / 1174
页数:31
相关论文
共 34 条
[1]   CLASSICAL DIRICHLET FORMS ON TOPOLOGICAL VECTOR-SPACES - CLOSABILITY AND A CAMERON-MARTIN FORMULA [J].
ALBEVERIO, S ;
ROCKNER, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :395-436
[2]  
Albeverio S, 1996, CR ACAD SCI I-MATH, V323, P1129
[3]   Analysis and geometry on configuration spaces [J].
Albeverio, S ;
Kondratiev, YG ;
Rockner, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (02) :444-500
[4]  
[Anonymous], PROBABILITES POTENTI
[5]  
[Anonymous], 1977, LECT NOTES MATH
[6]  
[Anonymous], PROBAB MATH STAT
[7]  
[Anonymous], ANN I H POINCARE
[8]  
[Anonymous], T AM MATH SOC
[9]  
APPLEBAUM D, 2008, UNIVERSAL MALLIAVIN
[10]  
Bichteler K., 1987, Malliavin Calculus for Processes with Jumps