Poly(diphenylacetylene)s having various silyl groups are soluble in common solvents, from whose membranes poly(diphenylacetylene) membranes can be obtained by desilylation. The oxygen permeability coefficients of the desilylated polymers are quite different from one another (120-3300 barrers) irrespective of the same polymer structure. When bulkier silyl groups are removed, the oxygen permeability increases to larger extents. Poly[1-aryl-2-p-(trimethylsilyl)phenylacetylenels are soluble in common solvents, and afford free-standing membranes. These Si-containing polymer membranes are desilylated to give the membranes of poly[1-aryl-2-phenylacetylenels. Both of the starting and desilylated polymers show very high thermal stability and high gas permeability. 1-Phenyl-2-p-(t-butyldimethylsiloxy)phenylacetylene polymerizes into a high-molecular-weight polymer. This polymer is soluble in common organic solvents to provide a free-standing membrane. Desilylation of this membrane yields a poly(diphenylacetylene) having free hydroxyl groups, which is the first example of a highly polar group-carrying poly(diphenylacetylene). The P-CO2/P-CH4 and P-CO2/ P-N2 permselectivity ratios of poly(1-phenyl-2-p-hydroxylphenylacetylene) membrane are as large as 47.8 and 45.8, respectively, while keeping relatively high P-CO2 of 110 barrers. (c) 2006 Wiley Periodicals, Inc.