Transition metal electrocatalysts encapsulated into N-doped carbon nanotubes on reduced graphene oxide nanosheets: efficient water splitting through synergistic effects

被引:85
|
作者
Wan, Wenchao [1 ]
Wei, Shiqian [2 ]
Li, Jingguo [1 ]
Triana, Carlos A. [1 ]
Zhou, Ying [2 ]
Patzke, Greta R. [1 ]
机构
[1] Univ Zurich, Dept Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Southwest Petr Univ, Sch Mat Sci & Engn, Ctr New Energy Mat & Technol, Chengdu 610500, Sichuan, Peoples R China
基金
瑞士国家科学基金会;
关键词
OXYGEN REDUCTION; OXIDATION; CATALYST; COBALT; SITES; NANOPARTICLES; POLYHEDRON; AEROGEL; DESIGN; ARRAYS;
D O I
10.1039/c9ta03213d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of efficient noble-metal free electrocatalysts is crucial for clean hydrogen production through water splitting. As carbon-based supports are expected to play a major role in low cost electrocatalysis, improved synthetic methods and a deeper understanding of their mechanisms of action are now required. To this end, we synthesized transition metal catalysts for overall water splitting encapsulated into nitrogen-doped carbon nanotubes (M-N-CNTs, M = Ni, Co, Fe) through a direct and convenient pyrolysis of bulk g-C3N4. Furthermore, the addition of reduced graphene oxide (rGO) leads to a significant dispersion of the catalytic N-CNTs. Among the obtained catalyst series, NiFe-N-CNT with rGO (NiFe-N-CNT-rGO) exhibits extremely low overpotential of 270 mV (on glassy carbon) for the oxygen evolution reaction (OER) at a current density of 10 mA cm(-2). This performance is superior to most of the previously reported noble metal-free catalysts for OER. Our comprehensive study unravels that the growth of CNTs follows a "reduction-nucleation-growth" process. The thermally reduced metallic nanoparticles (NPs) serve as nucleation sites of carbon species on their surface to further promote N-CNT growth. Density functional theory (DFT) calculations reveal that the CNT walls and N-dopants in the catalysts modify the electronic structure and adjust the free energy toward the adsorption of intermediates. The one-step hydrogen evolution reaction (HER) process is influenced more strongly by N-centers when compared to the four-electron transfer OER process. The scalable and straightforward synthesis together with excellent electrocatalytic performance renders the NiFe-N-CNT-rGO hybrid catalyst quite promising for large-scale water splitting applications.
引用
收藏
页码:15145 / 15155
页数:11
相关论文
共 50 条
  • [1] Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubes-grafted N-doped carbon nanosheets for water splitting
    Yang, Ming
    Yang, Yuanyuan
    Wang, Kaizhi
    Li, Shuwen
    Feng, Fan
    Lan, Kai
    Jiang, Pengbo
    Huang, Xiaokang
    Yang, Honglei
    Li, Rong
    ELECTROCHIMICA ACTA, 2020, 337 (337)
  • [2] Facile Synthesis of Co Nanoparticles Embedded in N-Doped Carbon Nanotubes/Graphitic Nanosheets as Bifunctional Electrocatalysts for Electrocatalytic Water Splitting
    Yang, Wei
    Li, Han
    Li, Pengzhang
    Xie, Linhua
    Liu, Yumin
    Cao, Zhenbao
    Tian, Chuanjin
    Wang, Chang-An
    Xie, Zhipeng
    MOLECULES, 2023, 28 (18):
  • [3] MOF-derived MoC-Fe heterojunctions encapsulated in N-doped carbon nanotubes for water splitting
    Huang, Minghong
    Zhou, Shenghua
    Ma, Dong-Dong
    Wei, Wenbo
    Zhu, Qi-Long
    Huang, Zhenguo
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [4] Universal avenue to metal-transition metal carbide grafted N-doped carbon framework as efficient dual Mott-Schottky electrocatalysts for water splitting
    Raj, Gokul
    Das, Debanjan
    Sarkar, Bidushi
    Biswas, Shauvik
    Nanda, Karuna Kar
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2022, 33
  • [5] CoP/N-Doped Carbon Hollow Spheres Anchored on Electrospinning Core-Shell N-Doped Carbon Nanofibers as Efficient Electrocatalysts for Water Splitting
    Tong, Jinhui
    Li, Yuliang
    Bo, Lili
    Li, Wenyan
    Li, Tao
    Zhang, Qi
    Kong, Deyuan
    Wang, Huan
    Li, Chunyan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (20) : 17432 - +
  • [6] N-doped carbon nanowire array confined cobalt phosphides as efficient bifunctional electrocatalysts for water splitting
    Ning, Shunlian
    Wu, Qikai
    Zhu, Yuguang
    Liu, Shilong
    Zhou, Wei
    Mi, Luo
    Zhou, Kai
    Zhao, Dengke
    Zhang, Xiyun
    Wang, Nan
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (07) : 2145 - 2153
  • [7] N-Doped Carbon Nanotubes Encapsulating Ni/MoN Heterostructures Grown on Carbon Cloth for Overall Water Splitting
    Wang, Pan
    Qi, Ji
    Li, Chuang
    Chen, Xiao
    Wang, Tonghua
    Liang, Changhai
    CHEMELECTROCHEM, 2020, 7 (03): : 745 - 752
  • [8] Computational screening of transition-metal doped boron nanotubes as efficient electrocatalysts for water splitting
    Lu, Jiajie
    Hou, Xiuli
    Xiao, Beibei
    Xu, Xuejian
    Mi, Jianli
    Zhang, Peng
    RSC ADVANCES, 2022, 12 (11) : 6841 - 6847
  • [9] Hollow CoP Encapsulated in an N-Doped Carbon Nanocage as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting
    Song, Xue-Zhi
    Zhao, Yu-Hang
    Yang, Wen-Bin
    Meng, Yu-Lan
    Chen, Xi
    Niu, Zan-Yao
    Wang, Xiao-Feng
    Tan, Zhenquan
    ACS APPLIED NANO MATERIALS, 2021, 4 (12) : 13450 - 13458
  • [10] N-doped carbon anchored CoS2/MoS2 nanosheets as efficient electrocatalysts for overall water splitting
    Zhou, Xingwei
    Zhang, Wei
    Zhang, Zunhao
    Wang, Zizhun
    Zou, Xu
    Li, Dabing
    Zheng, Weitao
    FRONTIERS OF OPTOELECTRONICS, 2022, 15 (01)