Influence of nanoparticle size distribution on the thermal conductivity of particulate nanocomposites

被引:31
作者
Huang, Cong-Liang [1 ,2 ]
Qian, Xin [2 ,3 ]
Yang, Rong-Gui [2 ,3 ]
机构
[1] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Peoples R China
[2] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[3] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
MEAN FREE-PATH; PHONON TRANSPORT; COMPOSITES; PREDICTION; SHELL;
D O I
10.1209/0295-5075/117/24001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conventional models for the thermal conductivity of nanocomposites neglect the particle size distribution by assuming all nanoparticles to be uniform in size, although in reality most particles in a nanocomposite are not uniform and the size distribution of the nanoparticles might strongly affect the thermal conductivity of nanocomposites as demonstrated in this letter. By including the lognormal distribution of the nanoparticle size into the thermal conductivity model of nanocomposites embedded with spherical particles, we show that the mean value and the standard deviation (SD) of the nanoparticle radius significantly affect the thermal conductivity of particulate nanocomposites. At the same mean radius of embedded particles, the thermal conductivity of the nanocomposite with lognormal size distribution at SD = 56 can be twice that with a uniform particle size. Our improved model on effective thermal conductivity of nanocomposites with nonuniform particles can provide a more accurate prediction on the thermal conductivity of realistic particulate nanocomposites. Copyright (C) EPLA, 2017
引用
收藏
页数:5
相关论文
共 43 条
[1]   Size and dimensionality dependent phonon conductivity in nanocomposites [J].
Al-Otaibi, Jawaher ;
Srivastava, G. P. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (14)
[2]   Effective heat conduction in dispersion of wires [J].
Behrang, A. ;
Grmela, M. ;
Dubois, C. ;
Turenne, S. ;
Lafleur, P. G. ;
Lebon, G. .
APPLIED PHYSICS LETTERS, 2014, 104 (06)
[3]   Influence of particle-matrix interface, temperature, and agglomeration on heat conduction in dispersions [J].
Behrang, A. ;
Grmela, M. ;
Dubois, C. ;
Turenne, S. ;
Lafleur, P. G. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (01)
[4]   Recent developments in thermoelectric materials [J].
Chen, G ;
Dresselhaus, MS ;
Dresselhaus, G ;
Fleurial, JP ;
Caillat, T .
INTERNATIONAL MATERIALS REVIEWS, 2003, 48 (01) :45-66
[5]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[6]   Thermal conductivity and heat transfer in superlattices [J].
Chen, G ;
Neagu, M .
APPLIED PHYSICS LETTERS, 1997, 71 (19) :2761-2763
[7]  
Chen G., 2005, PAPPAL SER MECH ENG
[8]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[9]   The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose [J].
Elazzouzi-Hafraoui, Samira ;
Nishiyama, Yoshiharu ;
Putaux, Jean-Luc ;
Heux, Laurent ;
Dubreuil, Frdric ;
Rochas, Cyrille .
BIOMACROMOLECULES, 2008, 9 (01) :57-65
[10]   ULTRAOPTISCHE EIGENSCHAFTEN VON METALLEN UND MITTLERE FREIE WEGLANGE DER LEITUNGSELEKTRONEN [J].
EULER, J .
ZEITSCHRIFT FUR PHYSIK, 1954, 137 (03) :318-332