Thermomechanical Nanostraining of Two-Dimensional Materials

被引:42
作者
Liu, Xia [1 ]
Sachan, Amit Kumar [2 ]
Howell, Samuel Tobias [1 ]
Conde-Rubio, Ana [1 ]
Knoll, Armin W. [3 ]
Boero, Giovanni [1 ]
Zenobi, Renato [2 ]
Brugger, Jurgen [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Microsyst Lab, CH-1015 Lausanne, Switzerland
[2] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[3] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
基金
欧洲研究理事会;
关键词
2D materials; strain nanopattern; molybdenum disulfide; local bandgap; thermal scanning probe lithography; tip-enhanced Raman spectroscopy;
D O I
10.1021/acs.nanolett.0c03358
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Local bandgap tuning in two-dimensional (2D) materials is of significant importance for electronic and optoelectronic devices but achieving controllable and reproducible strain engineering at the nanoscale remains a challenge. Here, we report on thermomechanical nanoindentation with a scanning probe to create strain nanopatterns in 2D transition metal dichalcogenides and graphene, enabling arbitrary patterns with a modulated bandgap at a spatial resolution down to 20 nm. The 2D material is in contact via van der Waals interactions with a thin polymer layer underneath that deforms due to the heat and indentation force from the heated probe. Specifically, we demonstrate that the local bandgap of molybdenum disulfide (MoS2) is spatially modulated up to 10% and is tunable up to 180 meV in magnitude at a linear rate of about -70 meV per percent of strain. The technique provides a versatile tool for investigating the localized strain engineering of 2D materials with nanometer-scale resolution.
引用
收藏
页码:8250 / 8257
页数:8
相关论文
共 43 条
[1]   Two-dimensional flexible nanoelectronics [J].
Akinwande, Deji ;
Petrone, Nicholas ;
Hone, James .
NATURE COMMUNICATIONS, 2014, 5
[2]   Nanoscale Shape-Memory Function in Highly Cross-Linked Polymers [J].
Altebaeumer, T. ;
Gotsmann, B. ;
Pozidis, H. ;
Knoll, A. ;
Duerig, U. .
NANO LETTERS, 2008, 8 (12) :4398-4403
[3]  
Brugger J., 2020, MICROSYSTEMS NANOENG, V6, P21
[4]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[5]   Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography [J].
Cho, Yu Kyoung Ryu ;
Rawlings, Colin D. ;
Wolf, Heiko ;
Spieser, Martin ;
Bisig, Samuel ;
Reidt, Steffen ;
Sousa, Marilyne ;
Khanal, Subarna R. ;
Jacobs, Tevis D. B. ;
Knoll, Armin W. .
ACS NANO, 2017, 11 (12) :11890-11897
[6]   Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography [J].
Coulembier, Olivier ;
Knoll, Armin ;
Pires, David ;
Gotsmann, Bernd ;
Duerig, Urs ;
Frommer, Jane ;
Miller, Robert D. ;
Dubois, Philippe ;
Hedrick, James L. .
MACROMOLECULES, 2010, 43 (01) :572-574
[7]   Strain Engineering of 2D Materials: Issues and Opportunities at the Interface [J].
Dai, Zhaohe ;
Liu, Luqi ;
Zhang, Zhong .
ADVANCED MATERIALS, 2019, 31 (45)
[8]   Strain-Induced Indirect to Direct Bandgap Transition in Multi layer WSe2 [J].
Desai, Sujay B. ;
Seol, Gyungseon ;
Kang, Jeong Seuk ;
Fang, Hui ;
Battaglia, Corsin ;
Kapadia, Rehan ;
Ager, Joel W. ;
Guo, Jing ;
Javey, Ali .
NANO LETTERS, 2014, 14 (08) :4592-4597
[9]  
Feng J, 2012, NAT PHOTONICS, V6, P865, DOI [10.1038/nphoton.2012.285, 10.1038/NPHOTON.2012.285]
[10]   Exciton Drift in Semiconductors under Uniform Strain Gradients: Application to Bent ZnO Microwires [J].
Fu, Xuewen ;
Jacopin, Gwenole ;
Shahmohammadi, Mehran ;
Liu, Ren ;
Benameur, Malik ;
Ganiere, Jean-Daniel ;
Feng, Ji ;
Guo, Wanlin ;
Liao, Zhi-Min ;
Deveaud, Benoit ;
Yu, Dapeng .
ACS NANO, 2014, 8 (04) :3412-3420