Thermomechanical Nanostraining of Two-Dimensional Materials

被引:42
作者
Liu, Xia [1 ]
Sachan, Amit Kumar [2 ]
Howell, Samuel Tobias [1 ]
Conde-Rubio, Ana [1 ]
Knoll, Armin W. [3 ]
Boero, Giovanni [1 ]
Zenobi, Renato [2 ]
Brugger, Jurgen [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Microsyst Lab, CH-1015 Lausanne, Switzerland
[2] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[3] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
基金
欧洲研究理事会;
关键词
2D materials; strain nanopattern; molybdenum disulfide; local bandgap; thermal scanning probe lithography; tip-enhanced Raman spectroscopy;
D O I
10.1021/acs.nanolett.0c03358
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Local bandgap tuning in two-dimensional (2D) materials is of significant importance for electronic and optoelectronic devices but achieving controllable and reproducible strain engineering at the nanoscale remains a challenge. Here, we report on thermomechanical nanoindentation with a scanning probe to create strain nanopatterns in 2D transition metal dichalcogenides and graphene, enabling arbitrary patterns with a modulated bandgap at a spatial resolution down to 20 nm. The 2D material is in contact via van der Waals interactions with a thin polymer layer underneath that deforms due to the heat and indentation force from the heated probe. Specifically, we demonstrate that the local bandgap of molybdenum disulfide (MoS2) is spatially modulated up to 10% and is tunable up to 180 meV in magnitude at a linear rate of about -70 meV per percent of strain. The technique provides a versatile tool for investigating the localized strain engineering of 2D materials with nanometer-scale resolution.
引用
收藏
页码:8250 / 8257
页数:8
相关论文
共 43 条
  • [1] Two-dimensional flexible nanoelectronics
    Akinwande, Deji
    Petrone, Nicholas
    Hone, James
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Nanoscale Shape-Memory Function in Highly Cross-Linked Polymers
    Altebaeumer, T.
    Gotsmann, B.
    Pozidis, H.
    Knoll, A.
    Duerig, U.
    [J]. NANO LETTERS, 2008, 8 (12) : 4398 - 4403
  • [3] Brugger J., 2020, MICROSYSTEMS NANOENG, V6, P21
  • [4] Local Strain Engineering in Atomically Thin MoS2
    Castellanos-Gomez, Andres
    Roldan, Rafael
    Cappelluti, Emmanuele
    Buscema, Michele
    Guinea, Francisco
    van der Zant, Herre S. J.
    Steele, Gary A.
    [J]. NANO LETTERS, 2013, 13 (11) : 5361 - 5366
  • [5] Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography
    Cho, Yu Kyoung Ryu
    Rawlings, Colin D.
    Wolf, Heiko
    Spieser, Martin
    Bisig, Samuel
    Reidt, Steffen
    Sousa, Marilyne
    Khanal, Subarna R.
    Jacobs, Tevis D. B.
    Knoll, Armin W.
    [J]. ACS NANO, 2017, 11 (12) : 11890 - 11897
  • [6] Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography
    Coulembier, Olivier
    Knoll, Armin
    Pires, David
    Gotsmann, Bernd
    Duerig, Urs
    Frommer, Jane
    Miller, Robert D.
    Dubois, Philippe
    Hedrick, James L.
    [J]. MACROMOLECULES, 2010, 43 (01) : 572 - 574
  • [7] Strain Engineering of 2D Materials: Issues and Opportunities at the Interface
    Dai, Zhaohe
    Liu, Luqi
    Zhang, Zhong
    [J]. ADVANCED MATERIALS, 2019, 31 (45)
  • [8] Strain-Induced Indirect to Direct Bandgap Transition in Multi layer WSe2
    Desai, Sujay B.
    Seol, Gyungseon
    Kang, Jeong Seuk
    Fang, Hui
    Battaglia, Corsin
    Kapadia, Rehan
    Ager, Joel W.
    Guo, Jing
    Javey, Ali
    [J]. NANO LETTERS, 2014, 14 (08) : 4592 - 4597
  • [9] Feng J, 2012, NAT PHOTONICS, V6, P865, DOI [10.1038/NPHOTON.2012.285, 10.1038/nphoton.2012.285]
  • [10] Exciton Drift in Semiconductors under Uniform Strain Gradients: Application to Bent ZnO Microwires
    Fu, Xuewen
    Jacopin, Gwenole
    Shahmohammadi, Mehran
    Liu, Ren
    Benameur, Malik
    Ganiere, Jean-Daniel
    Feng, Ji
    Guo, Wanlin
    Liao, Zhi-Min
    Deveaud, Benoit
    Yu, Dapeng
    [J]. ACS NANO, 2014, 8 (04) : 3412 - 3420