Fractional skew monoid rings

被引:35
作者
Ara, P
González-Barroso, MA
Goodearl, KR [1 ]
Pardo, E
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
[3] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
基金
美国国家科学基金会;
关键词
skew monoid ring; purely infinite simple ring; Leavitt algebra;
D O I
10.1016/j.jalgebra.2004.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an action alpha of a monoid T on a ring A by ring endomorphisms, and an Ore subset S of T, a general construction of a fractional skew monoid ring S-op (*alpha) A (*alpha) T is given, extending the usual constructions of skew group rings and of skew semigroup rings. In case S is a subsemigroup of a group G such that G = S-1 S, we obtain a G-graded ring S-op (*alpha) A (*alpha) S with the property that, for each s epsilon S, the s-component contains a left invertible element and the s(-1)-component contains a right invertible element. In the most basic case, where G = Z and S = T = Z(+), the construction is fully determined by a single ring endomorphism alpha of A. If alpha is an isomorphism onto a proper corner pAp, we obtain an analogue of the usual skew Laurent polynomial ring, denoted by A [t(+), t_; alpha]. Examples of this construction are given, and it is proven that several classes of known algebras, including the Leavitt algebras of type (1, n), can be presented in the form A[t(+), t_; alpha]. Finally, mild and reasonably natural conditions are obtained under which S-op (*alpha) A (*alpha) S is a purely infinite simple ring. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:104 / 126
页数:23
相关论文
共 19 条
[1]   K0 of purely infinite simple regular rings [J].
Ara, P ;
Goodearl, KR ;
Pardo, E .
K-THEORY, 2002, 26 (01) :69-100
[2]  
ARA P, 2004, K1 CORNER SKEW LAURE
[3]  
ARA P, IN PRESS P AM MATH S
[4]   COPRODUCTS AND SOME UNIVERSAL RING CONSTRUCTIONS [J].
BERGMAN, GM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 200 :33-88
[5]  
Blackadar B., 1998, MATH SCI RES I PUBLI, V5
[6]  
Clifford AH, 1961, ALGEBRAIC THEORY SEM, VI
[7]  
Cohn P. M., 1985, LONDON MATH SOC MONO, V19
[8]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268
[9]  
Goodearl K.R., 1979, Von Neumann Regular Rings
[10]   Semigroup crossed products and the Toeplitz algebras of nonabelian groups [J].
Laca, M ;
Raeburn, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 139 (02) :415-440