Applications of convex analysis within mathematics

被引:8
作者
Artacho, Francisco J. Aragon [1 ]
Borwein, Jonathan M. [1 ,2 ]
Martin-Marquez, Victoria [3 ]
Yao, Liangjin [1 ]
机构
[1] Univ Newcastle, Ctr Comp Assisted Res Math & Its Applicat CARMA, Callaghan, NSW 2308, Australia
[2] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
[3] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
基金
澳大利亚研究理事会;
关键词
Convex function; Chebyshev set; Fenchel conjugate; Monotone operator; Fitzpatrick function; Autoconjugate representer; MAXIMAL MONOTONE-OPERATORS; REFLEXIVE BANACH-SPACES; SUBDIFFERENTIAL CALCULUS; FITZPATRICK FUNCTIONS; FENCHEL DUALITY; REPRESENTATION; EXTENSION; MAPPINGS; SUMS; SETS;
D O I
10.1007/s10107-013-0707-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we study convex analysis and its theoretical applications. We first apply important tools of convex analysis to Optimization and to Analysis. We then show various deep applications of convex analysis and especially infimal convolution in Monotone Operator Theory. Among other things, we recapture the Minty surjectivity theorem in Hilbert space, and present a new proof of the sum theorem in reflexive spaces. More technically, we also discuss autoconjugate representers for maximally monotone operators. Finally, we consider various other applications in mathematical analysis.
引用
收藏
页码:49 / 88
页数:40
相关论文
共 64 条
[1]   Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces [J].
Alber, Y ;
Butnariu, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (01) :33-61
[2]   Preserving maximal monotonicity with applications in sum and composition rules [J].
Alimohammady, Mohsen ;
Dadashi, Vahid .
OPTIMIZATION LETTERS, 2013, 7 (03) :511-517
[3]  
[Anonymous], J OPTIM THE IN PRESS
[4]  
[Anonymous], 1993, CONVEX FUNCTIONS
[5]   AVERAGED NORMS [J].
ASPLUND, E .
ISRAEL JOURNAL OF MATHEMATICS, 1967, 5 (04) :227-&
[6]  
ATTOUCH H, 1996, SERDICA MATH J, V22, P165
[7]   On difference convexity of locally Lipschitz functions [J].
Bacak, Miroslav ;
Borwein, Jonathan M. .
OPTIMIZATION, 2011, 60 (8-9) :961-978
[8]  
Bauschke H.H., 2010, BIOMEDICAL MATH PROM, P57
[9]   Construction of Pathological Maximally Monotone Operators on Non-reflexive Banach Spaces [J].
Bauschke, Heinz H. ;
Borwein, Jonathan M. ;
Wang, Xianfu ;
Yao, Liangjin .
SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (03) :387-415
[10]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7