Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times

被引:47
作者
Perreard, I. M. [1 ]
Reeves, D. B. [2 ]
Zhang, X. [1 ]
Kuehlert, E. [1 ]
Forauer, E. R. [1 ]
Weaver, J. B. [1 ,2 ,3 ,4 ]
机构
[1] Dartmouth Coll, Geisel Sch Med, Dept Radiol, Hanover, NH 03755 USA
[2] Dartmouth Coll, Dept Phys, Hanover, NH 03755 USA
[3] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[4] Dartmouth Hitchcock Med Ctr, Lebanon, NH 03766 USA
关键词
nanoparticles; MSB; temperature measurements; HYPERTHERMIA; SENSITIVITY;
D O I
10.1088/0031-9155/59/5/1109
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate temperature measurements are essential to safe and effective thermal therapies for cancer and other diseases. However, conventional thermometry is challenging so using the heating agents themselves as probes allows for ideal local measurements. Here, we present a new noninvasive method for measuring the temperature of the microenvironment surrounding magnetic nanoparticles from the Brownian relaxation time of nanoparticles. Experimentally, the relaxation time can be determined from the nanoparticle magnetization induced by an alternating magnetic field at various applied frequencies. A previously described method for nanoparticle temperature estimation used a low frequency Langevin function description of magnetic dipoles and varied the excitation field amplitude to estimate the energy state distribution and the corresponding temperature. We show that the new method is more accurate than the previous method at higher applied field frequencies that push the system farther from equilibrium.
引用
收藏
页码:1109 / 1119
页数:11
相关论文
共 27 条
  • [1] Progress in functionalization of magnetic nanoparticles for applications in biomedicine
    Berry, Catherine C.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (22)
  • [2] Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields
    Bordelon, David E.
    Cornejo, Christine
    Gruettner, Cordula
    Westphal, Fritz
    DeWeese, Theodore L.
    Ivkov, Robert
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
  • [4] Fay F, 2011, IMMUNOTHERAPY-UK, V3, P381, DOI [10.2217/imt.11.5, 10.2217/IMT.11.5]
  • [5] Ferguson R.M., 2012, J APPL PHYS, V111
  • [6] Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging
    Ferguson, R. Matthew
    Minard, Kevin R.
    Khandhar, Amit P.
    Krishnan, Kannan M.
    [J]. MEDICAL PHYSICS, 2011, 38 (03) : 1619 - 1626
  • [7] Optimization of nanoparticle core size for magnetic particle imaging
    Ferguson, R. Matthew
    Minard, Kevin R.
    Krishnan, Kannan M.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (10) : 1548 - 1551
  • [8] Gard T. C, 1998, Introduction to Stochastic Differential Equations
  • [9] Tomographic imaging using the nonlinear response of magnetic particles
    Gleich, B
    Weizenecker, R
    [J]. NATURE, 2005, 435 (7046) : 1214 - 1217
  • [10] Magnetic nanoparticle hyperthermia for prostate cancer
    Johannsen, Manfred
    Thiesen, Burghard
    Wust, Peter
    Jordan, Andreas
    [J]. INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2010, 26 (08) : 790 - 795