Studying DNA-protein interactions with single-molecule Forster resonance energy transfer

被引:10
|
作者
Farooq, Shazia [1 ]
Fijen, Carel [1 ]
Hohlbein, Johannes [1 ]
机构
[1] Wageningen UR, Biophys Lab, Wageningen, Netherlands
关键词
Single-molecule Forster resonance energy transfer; Fluorescence; Enzymes; DNA; DNA-protein interactions; RNA-POLYMERASE-II; PROBABILITY-DISTRIBUTION ANALYSIS; MULTIPARAMETER FLUORESCENCE DETECTION; ALTERNATING-LASER EXCITATION; NANO-POSITIONING SYSTEM; ATOMIC-FORCE MICROSCOPE; 3.3 ANGSTROM RESOLUTION; COLI REP HELICASE; ESCHERICHIA-COLI; STRUCTURAL BASIS;
D O I
10.1007/s00709-013-0596-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Single-molecule Forster resonance energy transfer (smFRET) has emerged as a powerful tool for elucidating biological structure and mechanisms on the molecular level. Here, we focus on applications of smFRET to study interactions between DNA and enzymes such as DNA and RNA polymerases. SmFRET, used as a nanoscopic ruler, allows for the detection and precise characterisation of dynamic and rarely occurring events, which are otherwise averaged out in ensemble-based experiments. In this review, we will highlight some recent developments that provide new means of studying complex biological systems either by combining smFRET with force-based techniques or by using data obtained from smFRET experiments as constrains for computer-aided modelling.
引用
收藏
页码:317 / 332
页数:16
相关论文
共 50 条
  • [31] Single-molecule analysis of DNA-protein complexes using nanopores
    Hornblower B.
    Coombs A.
    Whitaker R.D.
    Kolomeisky A.
    Picone S.J.
    Meller A.
    Akeson M.
    Nature Methods, 2007, 4 (4) : 315 - 317
  • [32] COMBINING OPTICAL TWEEZERS, SINGLE-MOLECULE FLUORESCENCE MICROSCOPY, AND MICROFLUIDICS FOR STUDIES OF DNA-PROTEIN INTERACTIONS
    Gross, Peter
    Farge, Geraldine
    Peterman, Erwin J. G.
    Wuite, Gijs J. L.
    METHODS IN ENZYMOLOGY, VOL 475: SINGLE MOLECULE TOOLS, PT B: SUPER-RESOLUTION, PARTICLE TRACKING, MULTIPARAMETER, AND FORCE BASED METHODS, 2010, 475 : 427 - 453
  • [33] Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA-Protein Interactions at the Single-Molecule Level
    Xue, Huijun
    Bei, Yuanyuan
    Zhan, Zhengyan
    Chen, Xiuqiang
    Xu, Xin
    Fu, Yu V.
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [34] High-throughput single-molecule analysis of DNA-protein interactions by tethered particle motion
    Plenat, Thomas
    Tardin, Catherine
    Rousseau, Philippe
    Salome, Laurence
    NUCLEIC ACIDS RESEARCH, 2012, 40 (12)
  • [35] Single-molecule DNA damage recognition: DNA-protein protein-protein interaction dynamics
    Lu, HP
    Iakoucheva, LM
    Ackerman, EJ
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 262A - 262A
  • [36] Plasmon-assisted Forster resonance energy transfer at the single-molecule level in the moderate quenching regime
    Bohlen, J.
    Cuartero-Gonzalez, A.
    Pibiri, E.
    Ruhlandt, D.
    Fernandez-Dominguez, A., I
    Tinnefeld, P.
    Acuna, G. P.
    NANOSCALE, 2019, 11 (16) : 7674 - 7681
  • [37] Genetically Encoded Forster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level
    Hoefig, Henning
    Otten, Julia
    Steffen, Victoria
    Pohl, Martina
    Boersma, Arnold J.
    Fitter, Joerg
    ACS SENSORS, 2018, 3 (08): : 1462 - 1470
  • [38] Quantifying kinetics from time series of single-molecule Forster resonance energy transfer efficiency histograms
    Benke, Stephan
    Nettels, Daniel
    Hofmann, Hagen
    Schuler, Benjamin
    NANOTECHNOLOGY, 2017, 28 (11)
  • [39] Single-Molecule Forster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy
    Zou, Yang
    Long, Saran
    Xiong, Tao
    Zhao, Xueze
    Sun, Wen
    Du, Jianjun
    Fan, Jiangli
    Peng, Xiaojun
    ACS CENTRAL SCIENCE, 2021, 7 (02) : 327 - 334
  • [40] Quantitative Single-Molecule Three-Color Forster Resonance Energy Transfer by Photon Distribution Analysis
    Barth, Anders
    von Voithenberg, Lena Voith
    Lamb, Don C.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (32): : 6901 - 6916