Acceleration of stable interface structure searching using a kriging approach

被引:53
作者
Kiyohara, Shin [1 ]
Oda, Hiromi [1 ]
Tsuda, Koji [2 ,3 ,4 ]
Mizoguchi, Teruyasu [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol, Kashiwa, Chiba 2778561, Japan
[3] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, Tsukuba, Ibaraki 3050047, Japan
[4] Natl Inst Adv Ind Sci & Technol, Biotechnol Res Inst Drug Discovery, Koto Ku, Tokyo 1350064, Japan
关键词
GRAIN-BOUNDARY STRUCTURE; COPPER; SIMULATION; ENERGY;
D O I
10.7567/JJAP.55.045502
中图分类号
O59 [应用物理学];
学科分类号
摘要
Crystalline interfaces have a tremendous impact on the properties of materials. Determination of the atomic structure of the interface is crucial for a comprehensive understanding of the interface properties. Despite this importance, extensive calculation is necessary to determine even one interface structure. In this study, we apply a technique called kriging, borrowed from geostatistics, to accelerate the determination of the interface structure. The atomic structure of simplified coincidence-site lattice interfaces were determined using the kriging approach. Our approach successfully determined the most stable interface structure with an efficiency almost 2 orders of magnitude better than the traditional "brute force" approach. (C) 2016 The Japan Society of Applied Physics
引用
收藏
页数:4
相关论文
共 26 条
  • [1] Grain boundary sliding and migration in copper: the effect of vacancies
    Ballo, P
    Slugen, V
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2005, 33 (04) : 491 - 498
  • [2] Calculated Resistances of Single Grain Boundaries in Copper
    Cesar, Mathieu
    Liu, Dongping
    Gall, Daniel
    Guo, Hong
    [J]. PHYSICAL REVIEW APPLIED, 2014, 2 (04):
  • [3] Insight into the grain boundary effect on the ionic transport of yttria-stabilized zirconia at elevated temperatures from a molecular modeling perspective
    Chang, Kai-Shiun
    Lin, Yi-Feng
    Tung, Kuo-Lun
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (22) : 9322 - 9330
  • [4] Effects of grain-boundary structure on the strength, toughness, and cyclic-fatigue properties of a monolithic silicon carbide
    Chen, D
    Zhang, XF
    Ritchie, RO
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (08) : 2079 - 2081
  • [5] Chua ALS, 2010, NAT MATER, V9, P418, DOI [10.1038/nmat2712, 10.1038/NMAT2712]
  • [6] The effect of grain boundaries on the mechanical properties and failure behavior of hexagonal boron nitride sheets
    Ding, Ning
    Wu, Chi-Man Lawrence
    Li, Hui
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (43) : 23716 - 23722
  • [7] Ducastelle F., 1991, Computer Simulation in Materials Science, P233, DOI DOI 10.1007/978-94-011-3546-7_11
  • [8] GULP: A computer program for the symmetry-adapted simulation of solids
    Gale, JD
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (04): : 629 - 637
  • [9] Grain boundary structure of ultrafine grained pure copper fabricated by accumulative roll bonding
    Ikeda, Ken-ichi
    Yamada, Kousuke
    Takata, Naoki
    Yoshida, Fuyuki
    Nakashima, Hideharu
    Tsuji, Nobuhiro
    [J]. MATERIALS TRANSACTIONS, 2008, 49 (01) : 24 - 30
  • [10] Atomic structure, electronic structure, and defect energetics in [001](310) Σ5 grain boundaries of SrTiO3 and BaTiO3
    Imaeda, M.
    Mizoguchi, T.
    Sato, Y.
    Lee, H. -S.
    Findlay, S. D.
    Shibata, N.
    Yamamoto, T.
    Ikuhara, Y.
    [J]. PHYSICAL REVIEW B, 2008, 78 (24):