Twin solutions to singular boundary value problems

被引:33
作者
Agarwal, RP
O'Regan, D
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
multiple solutions; singular problems; Leray-Schauder alternative; Krasnoselskii's fixed point theorem; lower type inequalities;
D O I
10.1090/S0002-9939-00-05320-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the existence of two nonnegative solutions to singular (n, p) and singular (p, n - p) focal boundary value problems. Our nonlinearity f(t, y) may be singular at y = 0, t = 0 and/or t = 1.
引用
收藏
页码:2085 / 2094
页数:10
相关论文
共 8 条
[1]   Singular boundary value problems for superlinear second order ordinary and delay differential equations [J].
Agarwal, RP ;
ORegan, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 130 (02) :333-355
[2]  
Agarwal RP, 1999, Z ANGEW MATH MECH, V79, P363, DOI 10.1002/(SICI)1521-4001(199906)79:6<363::AID-ZAMM363>3.3.CO
[3]  
2-A
[4]  
AGARWAL RP, IN PRESS NONLINEAR A
[5]  
AGARWAL RP, 1999, CMP, V99, P10
[6]   SINGULAR NONLINEAR BOUNDARY-VALUE-PROBLEMS FOR HIGHER-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
ELOE, PW ;
HENDERSON, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (01) :1-10
[7]   MULTIPLE POSITIVE SOLUTIONS OF SOME BOUNDARY-VALUE-PROBLEMS [J].
ERBE, LH ;
HU, SC ;
WANG, HY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :640-648
[8]  
O'Regan D., 1997, Existence Theory for nonlinear ordinary differential equations