Counting roots of the characteristic equation for linear delay-differential systems

被引:52
作者
Hassard, BD
机构
[1] Department of Mathematics, SUNY at Buffalo, 106 Diefendorf Hall, Buffalo
基金
美国国家科学基金会;
关键词
D O I
10.1006/jdeq.1996.3127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A formula is given that counts the number of roots in the positive half plane of the characteristic equation for general real constant coefficient, linear delay-differential systems. The formula is used to establish necessary and sufficient conditions for asymptotic stability of the zero solution of linear delay-differential systems. The formula is potentially useful in verifying stability hypotheses that arise in bifurcation analysis of autonomous delay-differential system. Application of the formula to Hopf bifurcation theory for delay-differential systems is discussed, and an example application to an equation with two delays is given. (C) 1997 Academic Press.
引用
收藏
页码:222 / 235
页数:14
相关论文
共 5 条
[1]  
Bellman R., 1963, DIFFERENTIAL DIFFERE
[2]  
HALE JK, 1977, THEORY FUNCTIONAL DI
[3]  
HASSARD BD, 1987, CAN MATH SOC C P
[4]  
HASSARD BD, 1981, THEORY APPLICATIONS
[5]  
Stepan G., 1979, QUALITATIVE THEORY D, P971