Advances in carbon capture, utilization and storage

被引:227
作者
Zhang, Zhien [1 ]
Wang, Tao [2 ]
Blunt, Martin J. [3 ]
Anthony, Edward John [4 ,5 ]
Park, Ah-Hyung Alissa [6 ]
Hughes, Robin W. [7 ]
Webley, Paul A. [8 ]
Yan, Jinyue [9 ]
机构
[1] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[2] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2BP, England
[4] Cranfield Univ, Sch Energy Environm & Agrifood, Ctr Combust & CCS, Bedford MK43 0AL, Beds, England
[5] Univ Ottawa, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada
[6] Columbia Univ, Dept Earth & Environm Engn, New York, NY USA
[7] CanmetENERGY, Nat Resources Canada, 1 Haanel Dr, Ottawa, ON K1A 1M1, Canada
[8] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia
[9] Malardalen Univ, Sch Sustainable Dev Soc & Technol, SE-72123 Vasteras, Sweden
关键词
CO2; Carbon capture; utilization and storage; Absorption; Adsorption; Techno-economic analysis; CO2;
D O I
10.1016/j.apenergy.2020.115627
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbon Capture, Utilization and Storage (CCUS) is one of the essential components for mitigating CO2 emissions. This special issue of Applied Energy includes research and review articles on CCUS technologies and applications. Recent developments in CO2 capture technologies with emphasis on post-combustion processes are highlighted. CO2 utilization in fuel production and other chemical processes, and CO2 storage are also presented, along with detailed discussion of life cycle assessments and techno-economic analyses to evaluate the various CCUS processes.
引用
收藏
页数:3
相关论文
共 27 条
[1]   Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent [J].
Alivand, Masood S. ;
Mazaheri, Omid ;
Wu, Yue ;
Stevens, Geoffrey W. ;
Scholes, Colin A. ;
Mumford, Kathryn A. .
APPLIED ENERGY, 2019, 256
[2]   Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture [J].
Bos, M. J. ;
Kersten, S. R. A. ;
Brilman, D. W. F. .
APPLIED ENERGY, 2020, 264
[3]   Production of synthetic natural gas from industrial carbon dioxide [J].
Chauvy, Remi ;
Dubois, Lionel ;
Lybaert, Paul ;
Thomas, Diane ;
De Weireld, Guy .
APPLIED ENERGY, 2020, 260
[4]   Environmental benefits of urea production from basic oxygen furnace gas [J].
de Kleijne, Kiane ;
James, Jebin ;
Hanssen, Steef, V ;
van Zelm, Rosalie .
APPLIED ENERGY, 2020, 270
[5]   Enhanced water gas shift processes for carbon dioxide capture and hydrogen production [J].
Gao, Wanlin ;
Zhou, Tuantuan ;
Gao, Yanshan ;
Wang, Qiang .
APPLIED ENERGY, 2019, 254
[6]   Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050 [J].
Guo, Jian-Xin ;
Huang, Chen .
APPLIED ENERGY, 2020, 259
[7]   A review of N-functionalized solid adsorbents for post-combustion CO2 capture [J].
Hu, Xiayi ;
Liu, Libin ;
Luo, Xiao ;
Xiao, Gongkui ;
Shiko, Elenica ;
Zhang, Rui ;
Fan, Xianfeng ;
Zhou, Yefeng ;
Liu, Yang ;
Zeng, Zhaogang ;
Li, Chao'en .
APPLIED ENERGY, 2020, 260
[8]   Recent advances on kinetics of carbon dioxide capture using solid sorbents at elevated temperatures [J].
Ji, Guozhao ;
Yang, Hang ;
Memon, Muhammad Zaki ;
Gao, Yuan ;
Qu, Boyu ;
Fu, Weng ;
Olguin, Gianni ;
Zhao, Ming ;
Li, Aimin .
APPLIED ENERGY, 2020, 267
[9]   Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption [J].
Jiang, L. ;
Gonzalez-Diaz, A. ;
Ling-Chin, J. ;
Roskilly, A. P. ;
Smallbone, A. J. .
APPLIED ENERGY, 2019, 245 :1-15
[10]   Thermo-physical properties of CO2 mixtures and their impacts on CO2 capture, transport and storage: Progress since 2011 [J].
Li, Hailong ;
Dong, Beibei ;
Yu, Zhixin ;
Yan, Jinyue ;
Zhu, Kai .
APPLIED ENERGY, 2019, 255