Enhancing Voluntary Motion With Modular, Backdrivable, Powered Hip and Knee Orthoses

被引:36
作者
Nesler, Christopher [1 ,2 ]
Thomas, Gray [1 ,2 ]
Divekar, Nikhil [1 ,2 ]
Rouse, Elliott J. [2 ,3 ]
Gregg, Robert D. [1 ,2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Robot Inst, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Prosthetics and exoskeletons; wearable robotics; LOWER-LIMB EXOSKELETON; SIT-TO-STAND; DESIGN; WALKING; VALIDATION; LIGHTWEIGHT; ENERGETICS; TORQUE;
D O I
10.1109/LRA.2022.3145580
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Mobility disabilities are prominent in society with wide-ranging deficits, motivating modular, partial-assist, lower-limb exoskeletons for this heterogeneous population. This letter introduces the Modular Backdrivable Lower-limb Unloading Exoskeleton (M-BLUE), which implements high torque, low mechanical impedance actuators on commercial orthoses with sheet metal modifications to produce a variety of hip- and/or knee-assisting configurations. Benchtop system identification verifies the desirable backdrive properties of the actuator, and allows for torque prediction within +/- 0.4 Nm. An able-bodied human subject experiment demonstrates that three unilateral configurations of M-BLUE (hip only, knee only, and hip-knee) with a simple gravity compensation controller can reduce muscle EMG readings in a lifting and lowering task relative to the bare condition. Reductions in mean muscular effort and peak muscle activation were seen across the primary squat musculature (excluding biceps femoris), demonstrating the potential to reduce fatigue leading to poor lifting posture. These promising results motivate applications of M-BLUE to additional populations, and the expansion of M-BLUE to bilateral and ankle configurations.
引用
收藏
页码:6155 / 6162
页数:8
相关论文
共 41 条
[1]  
Abd Rahim A. A., 2019, 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), P209, DOI 10.1109/ICCSCE47578.2019.9068583
[2]  
Asbeck AT, 2015, IEEE INT CONF ROBOT, P6197, DOI 10.1109/ICRA.2015.7140069
[3]   A soft robotic exosuit improves walking in patients after stroke [J].
Awad, Louis N. ;
Bae, Jaehyun ;
O'Donnell, Kathleen ;
De Rossi, Stefano M. M. ;
Hendron, Kathryn ;
Sloot, Lizeth H. ;
Kudzia, Pawel ;
Allen, Stephen ;
Holt, Kenneth G. ;
Ellis, Terry D. ;
Walsh, Conor J. .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (400)
[4]   Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics [J].
Baunsgaard, Carsten Bach ;
Nissen, Ulla Vig ;
Brust, Anne Katrin ;
Frotzler, Angela ;
Ribeill, Cornelia ;
Kalke, Yorck-Bernhard ;
Leon, Natacha ;
Gomez, Belen ;
Samuelsson, Kersti ;
Antepohl, Wolfram ;
Holmstrom, Ulrika ;
Marklund, Niklas ;
Glott, Thomas ;
Opheim, Arve ;
Benito, Jesus ;
Murillo, Narda ;
Nachtegaal, Janneke ;
Faber, Willemijn ;
Biering-Sorensen, Fin .
SPINAL CORD, 2018, 56 (02) :106-116
[5]  
Brackx B, 2014, P IEEE RAS-EMBS INT, P485, DOI 10.1109/BIOROB.2014.6913824
[6]  
Divekar NV, 2020, P IEEE RAS-EMBS INT, P997, DOI [10.1109/BioRob49111.2020.9224341, 10.1109/biorob49111.2020.9224341]
[7]  
Duval JF, 2016, P IEEE RAS-EMBS INT, P1056, DOI 10.1109/BIOROB.2016.7523771
[8]  
Duval JF, 2016, P IEEE RAS-EMBS INT, P1236, DOI 10.1109/BIOROB.2016.7523800
[9]   Design and Validation of a Powered Knee-Ankle Prosthesis With High-Torque, Low-Impedance Actuators [J].
Elery, Toby ;
Rezazadeh, Siavash ;
Nesler, Christopher ;
Gregg, Robert D. .
IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (06) :1649-1668
[10]   Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals [J].
Farris, Ryan J. ;
Quintero, Hugo A. ;
Goldfarb, Michael .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2011, 19 (06) :652-659