Data-driven model reference control design by prediction error identification

被引:53
作者
Campestrini, Luciola [1 ]
Eckhard, Diego [2 ]
Bazanella, Alexandre Sanfelice [1 ]
Gevers, Michel [3 ]
机构
[1] Univ Fed Rio Grande do Sul, Dept Automat & Energy, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Dept Pure & Appl Math, Porto Alegre, RS, Brazil
[3] Catholic Univ Louvain, Dept Math Engn, Louvain La Neuve, Belgium
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2017年 / 354卷 / 06期
关键词
DIAGNOSIS;
D O I
10.1016/j.jfranklin.2016.08.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with Data-Driven (DD) control design in a Model Reference (MR) framework. We present a new DD method for tuning the parameters of a controller with a fixed structure. Because the method originates from embedding the control design problem in the Prediction Error identification of an optimal controller, it is baptized as Optimal Controller Identification (OCI). Incorporating different levels of prior information about the optimal controller leads to different design choices, which allows to shape the bias and variance errors in its estimation. It is shown that the limit case where all available prior information is incorporated is tantamount to model-based design. Thus, this methodology also provides a framework in which model-based design and DD design can be fairly and objectively compared. This comparison reveals that DD design essentially outperforms model-based design by providing better bias shaping, except in the full order controller case, in which there is no bias and model-based design provides smaller variance. The practical effectiveness of the design methodology is illustrated with experimental results. (C) 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2628 / 2647
页数:20
相关论文
共 18 条
[1]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[2]   Necessary and sufficient conditions for uniqueness of the minimum in Prediction Error Identification [J].
Bazanella, A. S. ;
Bombois, X. ;
Gevers, M. .
AUTOMATICA, 2012, 48 (08) :1621-1630
[3]  
Bazanella AS, 2012, COMMUN CONTROL ENG, P1, DOI 10.1007/978-94-007-2300-9
[4]   Virtual Reference Feedback Tuning for non-minimum phase plants [J].
Campestrini, L. ;
Eckhard, D. ;
Gevers, M. ;
Bazanella, A. S. .
AUTOMATICA, 2011, 47 (08) :1778-1784
[5]  
Campestrini L., 2012, 16 IFAC S SYST ID, P1478
[6]   Virtual reference feedback tuning: a direct method for the design of feedback controllers [J].
Campi, MC ;
Lecchini, A ;
Savaresi, SM .
AUTOMATICA, 2002, 38 (08) :1337-1346
[7]  
Eckhard D., 2012, 16 IFAC S SYST ID, P698
[8]  
Gongalves da Silva G.R., 2014, P 20 C BRAS AUT, P1088
[9]   Iterative feedback tuning: Theory and Applications [J].
Hjalmarsson, H ;
Gevers, M ;
Gunnarsson, S ;
Lequin, O .
IEEE CONTROL SYSTEMS MAGAZINE, 1998, 18 (04) :26-41
[10]  
HJALMARSSON H, 1994, IEEE DECIS CONTR P, P1735, DOI 10.1109/CDC.1994.411185