Impact of work function induced electric fields on laser-based angle-resolved photoemission spectroscopy

被引:9
|
作者
Fero, A. [1 ,2 ]
Smallwood, C. L. [1 ,2 ]
Affeldt, G. [1 ,2 ]
Lanzara, A. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
Electric fields; ARPES; Photoemission; Laser; Spectroscopy; Work function; SUPERCONDUCTORS;
D O I
10.1016/j.elspec.2014.01.008
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
We examine the effects of the electric fields caused by the difference in work function between a sample and its surroundings in laser-based angle-resolved photoemission spectroscopy (laser ARPES) experiments. To simulate these effects we created several samples and surrounding puck geometries using Simian 8.0 modeling software, and found that in most cases the system can be approximated by a circular sample mounted on an infinite conducting plane. Experimental measurements of the cuprate superconductor Bi2Sr2CaCu2O8+delta mounted on copper, aluminum, and graphite pucks confirmed the model's accuracy. Both the model and experimental data showed that work-function-induced fields have a significant effect on the outgoing trajectories of electrons for kinetic energies up to six times the work function difference between the sample and the puck. However, with the exception of effects very close to the sample edge, all electric field effects can be taken into account using linear corrections. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:237 / 243
页数:7
相关论文
共 50 条
  • [21] Computational framework chinook for angle-resolved photoemission spectroscopy
    Day, Ryan P.
    Zwartsenberg, Berend
    Elfimov, Ilya S.
    Damascelli, Andrea
    NPJ QUANTUM MATERIALS, 2019, 4 (1)
  • [22] Angle-resolved photoemission spectroscopy studies of topological semimetals
    Gao, Shunye
    Qian, Tian
    Yang, Lexian
    Liu, Zhongkai
    Chen, Yulin
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (06)
  • [23] Computational framework chinook for angle-resolved photoemission spectroscopy
    Ryan P. Day
    Berend Zwartsenberg
    Ilya S. Elfimov
    Andrea Damascelli
    npj Quantum Materials, 4
  • [24] Angle-resolved photoemission spectroscopy with quantum gas microscopes
    Bohrdt, A.
    Greif, D.
    Demler, E.
    Knap, M.
    Grusdt, F.
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [25] Looking beyond the surface with angle-resolved photoemission spectroscopy
    Day, R. P.
    Elfimov, I. S.
    Damascelli, A.
    PHYSICAL REVIEW B, 2023, 108 (04)
  • [26] An autoencoder for compressing angle-resolved photoemission spectroscopy data
    Agustsson, Steinn ymir
    Haque, Mohammad Ahsanul
    Truong, Thi Tam
    Bianchi, Marco
    Klyuchnikov, Nikita
    Mottin, Davide
    Karras, Panagiotis
    Hofmann, Philip
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):
  • [27] Polarization dependence of angle-resolved photoemission spectroscopy of graphite
    Mahatha, S. K.
    Menon, Krishnakumar S. R.
    SURFACE SCIENCE, 2012, 606 (21-22) : 1705 - 1708
  • [28] Angle-resolved photoemission spectroscopy of UPt3
    Ito, T
    Kumigashira, H
    Kim, HD
    Takahashi, T
    Kimura, N
    Haga, Y
    Yamamoto, E
    Onuki, Y
    Harima, H
    PHYSICA B-CONDENSED MATTER, 1999, 259-61 : 1122 - 1123
  • [29] Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system
    Peter T. Brown
    Elmer Guardado-Sanchez
    Benjamin M. Spar
    Edwin W. Huang
    Thomas P. Devereaux
    Waseem S. Bakr
    Nature Physics, 2020, 16 : 26 - 31
  • [30] Angle-resolved photoemission spectroscopy studies of cuprate superconductors
    Shen, ZX
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON FRONTIERS OF SCIENCE, 2003, : 71 - 94