Boundedness of log Calabi-Yau pairs of Fano type

被引:26
作者
Hacon, Christopher D. [1 ]
Xi, Chenyang [2 ]
机构
[1] Univ Utah, Dept Math, 155 South 1400 East,JWB 233, Salt Lake City, UT 84112 USA
[2] Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
PLURICANONICAL SYSTEMS; GENERAL TYPE; VARIETIES; 3-FOLDS;
D O I
10.4310/MRL.2015.v22.n6.a8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a boundedness result for klt pairs (X, B) such that K-X + B 0 and B is big. As a consequence we obtain a positive answer to the Effective Iitaka Fibration Conjecture for klt pairs with big boundary.
引用
收藏
页码:1699 / 1716
页数:18
相关论文
共 29 条
[1]  
Alexeev V., 1994, INT J MATH, V5, P779, DOI 10.1142/S0129167X94000395
[2]  
Ambro Florin, 1999, ARXIV9903060
[3]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[4]  
Birkar Caucher, 2014, ARXIV14100938
[5]   On complete intersections with trivial canonical class [J].
Borisov, Lev A. ;
Li, Zhan .
ADVANCES IN MATHEMATICS, 2015, 268 :339-349
[6]   NEW OUTLOOK ON THE MINIMAL MODEL PROGRAM, I [J].
Cascini, Paolo ;
Lazic, Vladimir .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (12) :2415-2467
[7]  
Chen JA, 2010, ANN SCI ECOLE NORM S, V43, P365
[8]   Deformations of canonical pairs and Fano varieties [J].
de Fernex, Tommaso ;
Hacon, Christopher D. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 651 :97-126
[9]  
Fujino O, 2000, J DIFFER GEOM, V56, P167
[10]   Boundedness of pluricanonical maps of varieties of general type [J].
Hacon, Christopher D. ;
McKernan, James .
INVENTIONES MATHEMATICAE, 2006, 166 (01) :1-25