Phonon Transport through Point Contacts between Graphitic Nanomaterials

被引:65
作者
Yang, Juekuan [1 ,2 ,3 ]
Shen, Meng [4 ]
Yang, Yang [3 ]
Evans, William J. [5 ]
Wei, Zhiyong [1 ,2 ]
Chen, Weiyu [1 ,2 ]
Zinn, Alfred A. [6 ]
Chen, Yunfei [1 ,2 ]
Prasher, Ravi [7 ,8 ]
Xu, Terry T. [9 ]
Keblinski, Pawel [4 ]
Li, Deyu [3 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Jiangsu Key Lab Design & Mfg Micronano Biomed Ins, Nanjing 210096, Jiangsu, Peoples R China
[3] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[4] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[5] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Troy, NY 12180 USA
[6] Lockheed Martin Space Syst Co, Adv Technol Ctr, Palo Alto, CA 94304 USA
[7] Sheetak Inc, Austin, TX 78744 USA
[8] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[9] Univ N Carolina, Dept Mech Engn & Engn Sci, Charlotte, NC 28223 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
THERMAL-CONDUCTIVITY; CARBON NANOTUBES; PYROLYTIC-GRAPHITE; SILICON NANOWIRES; GRAPHENE; RESISTANCE; CONDUCTANCE; COMPOSITES;
D O I
10.1103/PhysRevLett.112.205901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurements of thermal transport through contacts between individual multiwall carbon nanotubes show that, contrary to common expectation, the normalized contact thermal conductance per unit area depends linearly on the tube diameter. The result is corroborated with and extended to multilayer graphene nanoribbons through molecular dynamics simulations. Semiquantitative analyses show that these intriguing observations are consistent with an explanation based on an unexpectedly large phonon mean free path in the c-axis direction of graphite, phonon reflection at free surfaces, and phonon focusing in highly anisotropic graphitic materials.
引用
收藏
页数:5
相关论文
共 33 条
  • [1] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [2] Carbon nanotubes - the route toward applications
    Baughman, RH
    Zakhidov, AA
    de Heer, WA
    [J]. SCIENCE, 2002, 297 (5582) : 787 - 792
  • [3] Upper bound to the thermal conductivity of carbon nanotube pellets
    Chalopin, Yann
    Volz, Sebastian
    Mingo, Natalio
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)
  • [4] Imaging dissipation and hot spots in carbon nanotube network transistors
    Estrada, David
    Pop, Eric
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (07)
  • [5] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534
  • [6] Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites
    Gojny, FH
    Wichmann, MHG
    Fiedler, B
    Kinloch, IA
    Bauhofer, W
    Windle, AH
    Schulte, K
    [J]. POLYMER, 2006, 47 (06) : 2036 - 2045
  • [7] Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes
    Greaney, P. Alex
    Grossman, Jeffrey C.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (12)
  • [8] Enhanced thermoelectric performance of rough silicon nanowires
    Hochbaum, Allon I.
    Chen, Renkun
    Delgado, Raul Diaz
    Liang, Wenjie
    Garnett, Erik C.
    Najarian, Mark
    Majumdar, Arun
    Yang, Peidong
    [J]. NATURE, 2008, 451 (7175) : 163 - U5
  • [9] Thermal conductivity of single-walled carbon nanotubes
    Hone, J
    Whitney, M
    Piskoti, C
    Zettl, A
    [J]. PHYSICAL REVIEW B, 1999, 59 (04): : R2514 - R2516
  • [10] Thermal transport measurements of individual multiwalled nanotubes
    Kim, P
    Shi, L
    Majumdar, A
    McEuen, PL
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (21) : 215502 - 1