Allow problems concerning spectral properties of sign pattern matrices: A survey

被引:30
作者
Catral, M. [2 ]
Olesky, D. D. [1 ]
van den Driessche, P. [2 ]
机构
[1] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Inertially arbitrary; Potentially nilpotent; Potentially stable; Signed digraph; Sign pattern matrix; Spectrally arbitrary; POTENTIALLY NILPOTENT; NONZERO PATTERNS; INERTIA SETS; STABILITY;
D O I
10.1016/j.laa.2009.01.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n x n sign pattern matrix has entries in {+, -. 0}. This paper surveys the following problems concerning spectral properties of sign pattern matrices: sign patterns that allow all possible spectra (spectrally arbitrary sign patterns): sign patterns that allow all inertias (inertially arbitrary sign patterns); sign patterns that allow nilpotency (potentially nilpotent sign patterns); and sign patterns that allow stability (potentially stable sign patterns). Relationships between these four classes of sign patterns are given, and several open problems are identified. (C) 2009 Elsevier Inc. Ail rights reserved.
引用
收藏
页码:3080 / 3094
页数:15
相关论文
共 62 条
[1]  
[Anonymous], 1993, Matrices and Graphs: Stability Prob- lems in Mathematical Ecology
[2]   STABILIZATION BY A DIAGONAL MATRIX [J].
BALLANTINE, CS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 25 (04) :728-+
[3]   Potentially nilpotent and spectrally arbitrary even cycle sign patterns [J].
Bingham, B. D. ;
Olesky, D. D. ;
van den Driessche, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (01) :24-44
[4]   POSITIVE FEEDBACK MAY SOMETIMES PROMOTE STABILITY [J].
BONE, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 51 (JUN) :143-151
[5]   Minimal spectrally arbitrary sign patterns [J].
Britz, T ;
McDonald, JJ ;
Olesky, DD ;
van den Driessche, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :257-271
[6]  
BRUALDI R, 2007, AIM WORKSH SPECTR FA
[7]  
Brualdi R., 1991, COMBINATORIAL MATRIX
[8]  
BRUALDI RA, 2007, LINEAR ALGEBRA ITS A, V420, P728
[9]  
BRUALDI RA, 1995, MATRICES SIGN SOLVAB, pCH10
[10]  
Cavers MS, 2007, ELECTRON J LINEAR AL, V16, P30