Universality of critical circle covers

被引:7
作者
Levin, G [1 ]
Swiatek, G
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
10.1007/s002200200661
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a class of critical circle covers we show that properly re-scaled first return maps to a neighborhood of the critical point converge to universal limits. For that to occur, the critical point has to be sufficiently flat.
引用
收藏
页码:371 / 399
页数:29
相关论文
共 31 条
[1]   Asymptotic rigidity of scaling ratios for critical circle mappings [J].
De Faria, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :995-1035
[2]   Rigidity of critical circle mappings II [J].
De Faria, E ;
De Melo, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :343-370
[3]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
[4]  
Eckmann, 1980, ITERATED MAPS INTERV
[5]   ANALYTICITY PROPERTIES OF THE FEIGENBAUM FUNCTION [J].
EPSTEIN, H ;
LASCOUX, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 81 (03) :437-453
[6]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[7]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[8]   Schwarzian derivative in unimodal dynamics [J].
Graczyk, J ;
Sands, D ;
Swiatek, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (04) :329-332
[9]  
Graczyk J., 1998, ANN MATH STUDIES, V144
[10]   METRIC PROPERTIES OF NON-RENORMALIZABLE S-UNIMODAL MAPS .1. INDUCED EXPANSION AND INVARIANT-MEASURES [J].
JAKOBSON, M ;
SWIATEK, G .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 :721-755