Holomorphic reproducing kernels for piecewise-smooth planar domains

被引:1
作者
Bolt, M [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
reproducing kernels; Szego kernel; piece-wise-smooth;
D O I
10.1016/j.jmaa.2004.02.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For smoothly bounded, multiply connected domain sin the complex plane, S. Bell showed how the Kerzman-Stein method can be used to compute the Szego kernel and Ahlfors map. In this paper, we present a modification of that method for domains that are piecewise-smooth. The procedure is based on a method of preliminary transformation and involves adding an explicit holomorphic function to the Cauchy kernel. In the last section, we show the effectiveness of using this method for the special case of a square. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:154 / 164
页数:11
相关论文
共 11 条
[2]  
BELL S, 1992, CAUCHY TRANSFORM POT
[3]   NUMERICAL CONFORMAL MAPPING VIA THE SZEGO KERNEL [J].
KERZMAN, N ;
TRUMMER, MR .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (1-2) :111-123
[4]   CAUCHY KERNEL, SZEGO KERNEL, AND RIEMANN MAPPING FUNCTION [J].
KERZMAN, N ;
STEIN, EM .
MATHEMATISCHE ANNALEN, 1978, 236 (01) :85-93
[5]  
KERZMAN N, 1979, HARMONIC ANAL EUCL 2, P3
[6]   AN ASYMPTOTIC FORMULA FOR THE BERGMAN PROJECTION ON A CERTAIN CLASS OF DOMAINS IN C [J].
MICHEL, J .
ARCHIV DER MATHEMATIK, 1990, 55 (06) :564-572
[7]  
Murid A.H.M., 1998, J INTEGRAL EQUAT, V10, P517, DOI DOI 10.1216/JIEA/1181074250)
[8]  
Nehari Z., 1975, CONFORMAL MAPPING
[9]   A FAST ALGORITHM FOR THE NUMERICAL EVALUATION OF CONFORMAL-MAPPINGS [J].
ODONNELL, ST ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (03) :475-487
[10]   Conformal mapping of nonsmooth domains via the Kerzman-Stein integral equation [J].
Thomas, AD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (01) :162-181