Sharp Asymptotics for the Neumann Laplacian with Variable Magnetic Field: Case of Dimension 2

被引:23
作者
Raymond, Nicolas [1 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
来源
ANNALES HENRI POINCARE | 2009年 / 10卷 / 01期
关键词
EIGENVALUE PROBLEMS; SUPERCONDUCTIVITY; DOMAINS; OPERATOR; BOTTLES; ONSET;
D O I
10.1007/s00023-009-0405-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this paper is to establish estimates of the lowest eigen-value of the Neumann realization of (i del + BA)(2) on an open bounded subset Omega subset of R(2) with smooth boundary as B tends to infinity. We introduce a "magnetic" curvature mixing the curvature of partial derivative Omega and the normal derivative of the magnetic field and obtain an estimate analogous with the one of constant case. Actually, we give a precise estimate of the lowest eigenvalue in the case where the restriction of magnetic field to the boundary admits a unique minimum which is non degenerate. We also give an estimate of the third critical field in Ginzburg-Landau theory in the variable magnetic field case.
引用
收藏
页码:95 / 122
页数:28
相关论文
共 21 条
[1]  
Agmon Shmuel., 1982, Mathematical Notes, V29
[2]  
ARAMAKI J, 2007, FAR E J MATH SCI, V25, P529
[3]  
ARAMAKI J, 2006, FAR E J MATH SCI, V23, P89
[4]   Stable nucleation for the Ginzburg-Landau system with an applied magnetic field [J].
Bauman, P ;
Phillips, D ;
Tang, Q .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (01) :1-43
[5]   Onset of superconductivity in decreasing fields for general domains [J].
Bernoff, A ;
Sternberg, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1272-1284
[6]  
Bonnaillie V, 2005, ASYMPTOTIC ANAL, V41, P215
[7]  
CYCON HL, 1986, SCHRODINGER OPERATOR
[8]   EIGENVALUES VARIATION .1. NEUMANN PROBLEM FOR STURM-LIOUVILLE OPERATORS [J].
DAUGE, M ;
HELFFER, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (02) :243-262
[9]   Boundary concentration for eigenvalue problems related to the onset of superconductivity [J].
del Pino, M ;
Felmer, PL ;
Sternberg, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) :413-446
[10]   On the third critical field in Ginzburg-Landau theory [J].
Fournais, S. ;
Helffer, B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (01) :153-196