Planar perovskite solar cells with long-term stability using ionic liquid additives

被引:902
作者
Bai, Sai [1 ,2 ]
Da, Peimei [1 ]
Li, Cheng [3 ,8 ]
Wang, Zhiping [1 ]
Yuan, Zhongcheng [2 ]
Fu, Fan [4 ]
Kawecki, Maciej [5 ,6 ]
Liu, Xianjie [2 ]
Sakai, Nobuya [1 ]
Wang, Jacob Tse-Wei [7 ]
Huettner, Sven [3 ]
Buecheler, Stephan [4 ]
Fahlman, Mats [2 ]
Gao, Feng [1 ,2 ]
Snaith, Henry J. [1 ]
机构
[1] Univ Oxford, Clarendon Lab, Oxford, England
[2] Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden
[3] Univ Bayreuth, Dept Chem, Bayreuth, Germany
[4] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Dubendorf, Switzerland
[5] Empa, Lab Nanoscale Mat Sci, Dubendorf, Switzerland
[6] Univ Basel, Dept Phys, Basel, Switzerland
[7] CSIRO Energy, Mayfield West, NSW, Australia
[8] Xiamen Univ, Sch Elect Sci & Engn, Xiamen, Fujian, Peoples R China
基金
瑞士国家科学基金会; 欧洲研究理事会; 英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
EFFICIENT; CATIONS;
D O I
10.1038/s41586-019-1357-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites(5-9), optimizing the interfaces within the device structures(10-13), and using new encapsulation techniques(14,15). However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate(16-18). Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.
引用
收藏
页码:245 / +
页数:19
相关论文
共 38 条
  • [1] Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells
    Aristidou, Nicholas
    Eames, Christopher
    Sanchez-Molina, Irene
    Bu, Xiangnan
    Kosco, Jan
    Islam, M. Saiful
    Haque, Saif A.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
    Arora, Neha
    Dar, M. Ibrahim
    Hinderhofer, Alexander
    Pellet, Norman
    Schreiber, Frank
    Zakeeruddin, Shaik Mohammed
    Graetzel, Michael
    [J]. SCIENCE, 2017, 358 (6364) : 768 - 771
  • [3] Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed Methylammonium Lead Halide Perovskites
    Bai, Sai
    Sakai, Nobuya
    Zhang, Wei
    Wang, Zhiping
    Wang, Jacob T.-W.
    Gao, Feng
    Snaith, Henry J.
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (01) : 462 - 473
  • [4] Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers
    Bella, Federico
    Griffini, Gianmarco
    Correa-Baena, Juan-Pablo
    Saracco, Guido
    Gratzel, Michael
    Hagfeldt, Anders
    Turri, Stefano
    Gerbaldi, Claudio
    [J]. SCIENCE, 2016, 354 (6309) : 203 - 206
  • [5] Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells (vol 9, pg 1655, 2016)
    Bryant, Daniel
    Aristidou, Nicholas
    Pont, Sebastian
    Sanchez-Molina, Irene
    Chotchuangchutchaval, Thana
    Wheeler, Scot
    Durrant, James R.
    Haque, Saif A.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) : 1850 - 1850
  • [6] Sequential deposition as a route to high-performance perovskite-sensitized solar cells
    Burschka, Julian
    Pellet, Norman
    Moon, Soo-Jin
    Humphry-Baker, Robin
    Gao, Peng
    Nazeeruddin, Mohammad K.
    Graetzel, Michael
    [J]. NATURE, 2013, 499 (7458) : 316 - +
  • [7] 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
    Bush, Kevin A.
    Palmstrom, Axel F.
    Yu, Zhengshan J.
    Boccard, Mathieu
    Cheacharoen, Rongrong
    Mailoa, Jonathan P.
    McMeekin, David P.
    Hoye, Robert L. Z.
    Bailie, Colin D.
    Leijtens, Tomas
    Peters, Ian Marius
    Minichetti, Maxmillian C.
    Rolston, Nicholas
    Prasanna, Rohit
    Sofia, Sarah
    Harwood, Duncan
    Ma, Wen
    Moghadam, Farhad
    Snaith, Henry J.
    Buonassisi, Tonio
    Holman, Zachary C.
    Bent, Stacey F.
    McGehee, Michael D.
    [J]. NATURE ENERGY, 2017, 2 (04):
  • [8] Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling
    Cheacharoen, Rongrong
    Rolston, Nicholas
    Harwood, Duncan
    Bush, Kevin A.
    Dauskardt, Reinhold H.
    McGehee, Michael D.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) : 144 - 150
  • [9] Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers
    Chen, Wei
    Wu, Yongzhen
    Yue, Youfeng
    Liu, Jian
    Zhang, Wenjun
    Yang, Xudong
    Chen, Han
    Bi, Enbing
    Ashraful, Islam
    Graetzel, Michael
    Han, Liyuan
    [J]. SCIENCE, 2015, 350 (6263) : 944 - 948
  • [10] Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
    Christians, Jeffrey A.
    Schulz, Philip
    Tinkham, Jonathan S.
    Schloemer, Tracy H.
    Harvey, Steven P.
    de Villers, Bertrand J. Tremolet
    Sellinger, Alan
    Berry, Joseph J.
    Luther, Joseph M.
    [J]. NATURE ENERGY, 2018, 3 (01): : 68 - 74