Full-text Automated Detection of Surgical Site Infections Secondary to Neurosurgery in Rennes, France

被引:19
|
作者
Campillo-Gimenez, Boris [1 ]
Garcelon, Nicolas
Jarno, Pascal [2 ]
Chapplain, Jean Marc [3 ]
Cuggia, Marc
机构
[1] Univ Rennes 1, Fac Med, INSERM, U936, Rue Prof Leon Bernard, F-35043 Rennes, France
[2] Univ Hosp Rennes, CCLIN Ouest, Rennes, France
[3] Univ Hosp Rennes, Dept Hosp Hygiene, Rennes, France
来源
MEDINFO 2013: PROCEEDINGS OF THE 14TH WORLD CONGRESS ON MEDICAL AND HEALTH INFORMATICS, PTS 1 AND 2 | 2013年 / 192卷
关键词
Surgical site infection; information retrieval; vector space model; text mining; NOSOCOMIAL INFECTIONS; SURVEILLANCE; PREVENTION;
D O I
10.3233/978-1-61499-289-9-572
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The surveillance of Surgical Site Infections (SSI) contributes to the management of risk in French hospitals. Manual identification of infections is costly, time-consuming and limits the promotion of preventive procedures by the dedicated teams. The introduction of alternative methods using automated detection strategies is promising to improve this surveillance. The present study describes an automated detection strategy for SSI in neurosurgery, based on textual analysis of medical reports stored in a clinical data warehouse. The method consists firstly, of enrichment and concept extraction from full-text reports using NOMINDEX, and secondly, text similarity measurement using a vector space model. The text detection was compared to the conventional strategy based on self-declaration and to the automated detection using the diagnosis-related group database. The text-mining approach showed the best detection accuracy, with recall and precision equal to 92% and 40% respectively, and confirmed the interest of reusing full-text medical reports to perform automated detection of SSI.
引用
收藏
页码:572 / 575
页数:4
相关论文
共 39 条
  • [21] Assessing the utility of deep neural networks in detecting superficial surgical site infections from free text electronic health record data
    Bonde, Alexander
    Lorenzen, Stephan
    Brixen, Gustav
    Troelsen, Anders
    Sillesen, Martin
    FRONTIERS IN DIGITAL HEALTH, 2024, 5
  • [22] Identifying colon and open reduction of fracture surgical site infections using a partially automated electronic algorithm
    Knepper, Bryan C.
    Young, Heather
    Reese, Sara M.
    Savitz, Lucy A.
    Price, Connie S.
    AMERICAN JOURNAL OF INFECTION CONTROL, 2014, 42 (10) : S291 - S295
  • [23] Automated surveillance for surgical site infections (SSI) in hospitals and surveillance networks-expert perspectives for implementation
    Denkel, Luisa A.
    Arnaud, Isabelle
    Brekelmans, Manon
    Puig-Asensio, Mireia
    Amin, Hoger
    Gubbels, Sophie
    Iversen, Pernille
    Abbas, Mohamed
    Presterl, Elisabeth
    Astagneau, Pascal
    van Rooden, Stephanie
    Aghdassi, Seven
    Duesseldorf, Heike
    Mertens, Karl
    van Mourik, Maaike S. M.
    van der Werff, Suzanne D.
    PRAISE SSI working grp
    ANTIMICROBIAL RESISTANCE AND INFECTION CONTROL, 2024, 13 (01):
  • [24] Validation of a semi-automated surveillance system for surgical site infections: Improving exhaustiveness, representativeness, and efficiency
    Malheiro, Rui
    Rocha-Pereira, Nuno
    Duro, Raquel
    Pereira, Claudia
    Alves, Carlos Lima
    Correia, Sofia
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2020, 99 : 355 - 361
  • [25] Topical vancomycin to reduce surgical-site infections in neurosurgery: Study protocol for a multi-center, randomized controlled trial
    Jonokuchi, Alexander J.
    Knopman, Jared
    Radwanski, Ryan E.
    Martinez, Moises A.
    Taylor, Blake Eaton Samuel
    Rothbaum, Michael
    Sullivan, Sean
    Robison, Trae R.
    Lo, Eric
    Christophe, Brandon R.
    Bruce, Eliza M.
    Khan, Sabrina
    Kellner, Christopher P.
    Sigounas, Dimitri
    Youngerman, Brett
    Bagiella, Emilia
    Angevine, Peter D.
    Lowy, Franklin D.
    Connolly, E. Sander
    CONTEMPORARY CLINICAL TRIALS, 2018, 64 : 195 - 200
  • [26] Assessing specific secondary ICD-9-CM codes as potential predictors of surgical site infections
    West, Jessica
    Khan, Yosef
    Murray, David M.
    Stevenson, Kurt B.
    AMERICAN JOURNAL OF INFECTION CONTROL, 2010, 38 (09) : 701 - 705
  • [27] Variability in the diagnosis of surgical-site infections after full-thickness skin grafting: an international survey
    Palmgren, J.
    Paoli, J.
    Schmidtchen, A.
    Saleh, K.
    BRITISH JOURNAL OF DERMATOLOGY, 2019, 180 (05) : 1169 - 1175
  • [28] The use of mobile thermal imaging and machine learning technology for the detection of early surgical site infections
    Prey, Beau J.
    Colburn, Zachary T.
    Williams, James M.
    Francis, Andrew D.
    Vu, Michael
    Lammers, Daniel
    McClellan, John
    Bingham, Jason R.
    AMERICAN JOURNAL OF SURGERY, 2024, 231 : 60 - 64
  • [29] Development of a fully automated surgical site infection detection algorithm for use in cardiac and orthopedic surgery research
    Suzuki, Hiroyuki
    Clore, Gosia S.
    Perencevich, Eli N.
    Hockett-Sherlock, Stacey M.
    Goto, Michihiko
    Nair, Rajeshwari
    Branch-Elliman, Westyn
    Richardson, Kelly K.
    Gupta, Kalpana
    Beck, Brice F.
    Alexander, Bruce
    Balkenende, Erin C.
    Schweizer, Marin L.
    INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2021, 42 (10) : 1215 - 1220
  • [30] Osteomyelitis pubis caused by Pseudomonas aeruginosa secondary to surgical site infections subsequent to vulvar cancer surgeries: A case report
    Omi, Makiko
    Tanaka, Yumiko Oishi
    Enokida, Taisuke
    Hayama, Brian
    Hayakawa, Keiko
    Fusegi, Atsushi
    Nomura, Hidetaka
    Kanao, Hiroyuki
    GYNECOLOGIC ONCOLOGY REPORTS, 2023, 50