Simulating Transcranial Direct Current Stimulation With a Detailed Anisotropic Human Head Model

被引:150
作者
Rampersad, Sumientra M. [1 ,2 ]
Janssen, Arno M. [1 ,2 ]
Lucka, Felix [3 ,4 ]
Aydin, Uemit [3 ]
Lanfer, Benjamin [3 ,5 ]
Lew, Seok [6 ]
Wolters, Carsten H. [3 ]
Stegeman, Dick F. [1 ,2 ,7 ,8 ]
Oostendorp, Thom F. [2 ,9 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Neurol, NL-6500 HB Nijmegen, Netherlands
[2] Donders Inst Brain Cognit & Behav, NL-6525 EZ Nijmegen, Netherlands
[3] Univ Munster, Inst Biomagnetism & Biosignalanal, D-48149 Munster, Germany
[4] Univ Munster, Inst Computat & Appl Math, D-48149 Munster, Germany
[5] BESA GmbH, D-82166 Grafelfing, Germany
[6] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02115 USA
[7] Vrije Univ Amsterdam, Fac Human Movement Sci, NL-1081 BT Amsterdam, Netherlands
[8] Vrije Univ Amsterdam, MOVE Res Inst, NL-1081 BT Amsterdam, Netherlands
[9] Radboud Univ Nijmegen, Med Ctr, Dept Cognit Neurosci, NL-6500 HB Nijmegen, Netherlands
基金
美国国家卫生研究院;
关键词
Cerebellum; finite element model (FEM); motor cortex; occipital cortex; prefrontal cortex; transcranial direct current stimulation (tDCS); NONINVASIVE CORTICAL STIMULATION; DORSOLATERAL PREFRONTAL CORTEX; ELECTRIC-FIELD; MOTOR CORTEX; WHITE-MATTER; TDCS; EXCITABILITY; CONDUCTIVITY; MODULATION; TISSUES;
D O I
10.1109/TNSRE.2014.2308997
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce long-lasting changes in cortical excitability that can benefit cognitive functioning and clinical treatment. In order to both better understand the mechanisms behind tDCS and possibly improve the technique, finite element models are used to simulate tDCS of the human brain. With the detailed anisotropic head model presented in this study, we provide accurate predictions of tDCS in the human brain for six of the practically most-used setups in clinical and cognitive research, targeting the primary motor cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, occipital cortex, and cerebellum. We present the resulting electric field strengths in the complete brain and introduce new methods to evaluate the effectivity in the target area specifically, where we have analyzed both the strength and direction of the field. For all cerebral targets studied, the currently accepted configurations produced sub-optimal field strengths. The configuration for cerebellum stimulation produced relatively high field strengths in its target area, but it needs higher input currents than cerebral stimulation does. This study suggests that improvements in the effects of transcranial direct current stimulation are achievable.
引用
收藏
页码:441 / 452
页数:12
相关论文
共 62 条
  • [51] Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images
    Ruthotto, L.
    Kugel, H.
    Olesch, J.
    Fischer, B.
    Modersitzki, J.
    Burger, M.
    Wolters, C. H.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (18) : 5715 - 5731
  • [52] Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation
    Salvador, R.
    Mekonnen, A.
    Ruffini, G.
    Miranda, P. C.
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 2073 - 2076
  • [53] Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS
    Shahid, Salman
    Wen, Peng
    Ahfock, Tony
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 109 (01) : 48 - 64
  • [54] Abnormal Changes of Synaptic Excitability in Migraine with Aura
    Siniatchkin, Michael
    Sendacki, Mascha
    Moeller, Friederike
    Wolff, Stephan
    Jansen, Olav
    Siebner, Hartwig
    Stephani, Ulrich
    [J]. CEREBRAL CORTEX, 2012, 22 (10) : 2207 - 2216
  • [55] Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model
    Suh, Hyun Sang
    Lee, Won Hee
    Kim, Tae-Seong
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (21) : 6961 - 6980
  • [56] Taubin G., 1995, Computer Graphics Proceedings. SIGGRAPH 95, P351, DOI 10.1145/218380.218473
  • [57] Conductivity tensor mapping of the human brain using diffusion tensor MRI
    Tuch, DS
    Wedeen, VJ
    Dale, AM
    George, JS
    Belliveau, JW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) : 11697 - 11701
  • [58] A multiphase level set framework for image segmentation using the Mumford and Shah model
    Vese, LA
    Chan, TF
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 50 (03) : 271 - 293
  • [59] Investigation of tDCS volume conduction effects in a highly realistic head model
    Wagner, S.
    Rampersad, S. M.
    Aydin, Ue
    Vorwerk, J.
    Oostendorp, T. F.
    Neuling, T.
    Herrmann, C. S.
    Stegeman, D. F.
    Wolters, C. H.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2014, 11 (01)
  • [60] Transcranial direct current stimulation: A computer-based human model study
    Wagner, Tim
    Fregni, Felipe
    Fecteau, Shirley
    Grodzinsky, Alan
    Zahn, Markus
    Pascual-Leone, Alvaro
    [J]. NEUROIMAGE, 2007, 35 (03) : 1113 - 1124