Rethinking Lunar Mare Basalt Regolith Formation: New Concepts of Lava Flow Protolith and Evolution of Regolith Thickness and Internal Structure

被引:38
作者
Head, James W. [1 ]
Wilson, Lionel [1 ,2 ]
机构
[1] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA
[2] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
基金
美国国家航空航天局;
关键词
lunar; regolith; mare basalt; protolith; autoregolith; pyroclastic; CHANGE-3 LANDING SITE; MOAT DOME STRUCTURES; COMPOSITIONAL ANALYSES; CRATER MORPHOLOGY; MAGMATIC FOAMS; SOURCE DEPTHS; MOON EVIDENCE; SURFACE; RADAR; GENERATION;
D O I
10.1029/2020GL088334
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Lunar mare regolith is traditionally thought to have formed by impact bombardment of newly emplaced coherent solidified basaltic lava. We use new models for initial emplacement of basalt magma to predict and map out thicknesses, surface topographies and internal structures of the fresh lava flows, and pyroclastic deposits that form the lunar mare regolith parent rock, or protolith. The range of basaltic eruption types produce widely varying initial conditions for regolith protolith, including (1) autoregolith, a fragmental meter-thick surface deposit that forms upon eruption and mimics impact-generated regolith in physical properties, (2) lava flows with significant near-surface vesicularity and macroporosity, (3) magmatic foams, and (4) dense, vesicle-poor flows. Each protolith has important implications for the subsequent growth, maturation, and regional variability of regolith deposits, suggesting wide spatial variations in the properties and thickness of regolith of similar age. Regolith may thus provide key insights into mare basalt protolith and its mode of emplacement.
引用
收藏
页数:12
相关论文
共 106 条
[1]  
Apollo 15 Preliminary Examination Team, 1972, Science, V175, P363
[2]  
Apollo Lunar Geology Investigation Team, 1972, SCIENCE, V175
[3]   Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data [J].
Bandfield, Joshua L. ;
Ghent, Rebecca R. ;
Vasavada, Ashwin R. ;
Paige, David A. ;
Lawrence, Samuel J. ;
Robinson, Mark S. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
[4]   The quantitative relationship between small impact crater morphology and regolith depth [J].
Bart, Gwendolyn D. .
ICARUS, 2014, 235 :130-135
[5]   Global survey of lunar regolith depths from LROC images [J].
Bart, Gwendolyn D. ;
Nickerson, Ryan D. ;
Lawder, Matthew T. ;
Melosh, H. J. .
ICARUS, 2011, 215 (02) :485-490
[6]  
Beaty D.W., 1978, LUNAR PLANETARY SCI, P359
[7]   Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M3) [J].
Besse, S. ;
Sunshine, J. M. ;
Staid, M. I. ;
Petro, N. E. ;
Boardman, J. W. ;
Green, R. O. ;
Head, J. W. ;
Isaacson, P. J. ;
Mustard, J. F. ;
Pieters, C. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
[8]   Evidence for basaltic volcanism on the Moon within the past 100 million years [J].
Braden, S. E. ;
Stopar, J. D. ;
Robinson, M. S. ;
Lawrence, S. J. ;
van der Bogert, C. H. ;
Hiesinger, H. .
NATURE GEOSCIENCE, 2014, 7 (11) :787-791
[9]   Compositional and temporal investigation of exposed lunar basalts in the Mare Imbrium region [J].
Bugiolacchi, Roberto ;
Guest, John E. .
ICARUS, 2008, 197 (01) :1-18
[10]   Improved discrimination of volcanic complexes, tectonic features, and regolith properties in Mare Serenitatis from Earth-based radar mapping [J].
Campbell, Bruce A. ;
Ray Hawke, B. ;
Morgan, Gareth A. ;
Carter, Lynn M. ;
Campbell, Donald B. ;
Nolan, Michael .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (02) :313-330