A fermion ground state energy functional is set up in terms of particle density, relative pair density, and kinetic energy tensor density. It satisfies a minimum principle if constrained by a complete set of compatibility conditions. A partial set, which thereby results in a lower bound energy under minimization, is obtained from the solution of model systems, as well as a small number of exact sum rules. Prototypical application is made to several one-dimensional spinless noninteracting models. The effectiveness of "atomic" constraints on model "molecules" is observed, as well as the structure of systems with only finitely many bound states.