Damage patterns recognition in dressing tools using PZT-based SHM and MLP networks

被引:4
作者
Junior, Pedro Oliveira C. [1 ]
Conte, Salvatore [2 ,3 ]
D'Addona, Doriana M. [2 ,3 ]
Aguiar, Paulo R. [1 ]
Baptista, Fabricio G. [1 ]
Bianchi, Eduardo C. [1 ]
Teti, Roberto [2 ,3 ]
机构
[1] Univ Estadual Paulista UNESP, Fac Engn, Dept Elect & Mech Engn, BR-17033360 Bauru, SP, Brazil
[2] Fraunhofer Joint Lab Excellence Adv Prod Technol, Piazzale Tecchio 80, I-80125 Naples, Italy
[3] Univ Naples Federico II, Dept Chem Mat & Ind Prod Engn, Piazzale Tecchio 80, I-80125 Naples, Italy
来源
12TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING | 2019年 / 79卷
基金
巴西圣保罗研究基金会;
关键词
Pattern recognition; dressing monitoring; MLP networks; PZT; SHM; PIEZOELECTRIC SENSORS; ACOUSTIC-EMISSION;
D O I
10.1016/j.procir.2019.02.071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to promoting the optimization of the theme: "grinding-dressing", this study intends to contribute to the fill the gap of works completed with the damage diagnostic systems in dressing tools. For this purpose, this work aims to use neural models based on multilayer Perceptron networks (MLP) to improve the damage pattern recognition in diamond dressing tools based on electromechanical impedance (EMI). Thus, experimental dressing tests were performed with a single-point diamond-dressing tool and a low-cost lead zirconate titanate (PZT) transducer to acquire the impedance signatures at different dressing passes. The proposed approach was able to select the optimal frequency range in impedance signatures to determine the dressing tool condition. To achieve this, representative damage indices in several frequency bands were considered as input to the proposed intelligent system. This new approach open the door to effective implementation of future works for a broader situation in grinding process. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:303 / 307
页数:5
相关论文
共 29 条
  • [1] Monitoring the dressing operation in the grinding process
    Aguiar, Paulo R.
    Souza, André G.O.
    Bianchi, Eduardo C.
    Leite, Ricardo R.
    Dotto, Fabio Romano Lofrano
    [J]. International Journal of Machining and Machinability of Materials, 2009, 5 (01) : 3 - 22
  • [2] Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model
    Alexandre, Felipe Aparecido
    Lopes, Wenderson Nascimento
    Lofrano Dotto, Fabio R.
    Ferreira, Fabio Isaac
    Aguiar, Paulo Roberto
    Bianchi, Eduardo Carlos
    Lopes, Jose Claudio
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 96 (1-4) : 67 - 79
  • [3] An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring
    Baptista, Fabricio G.
    Budoya, Danilo E.
    de Almeida, Vinicius A. D.
    Ulson, Jose Alfredo C.
    [J]. SENSORS, 2014, 14 (01): : 1208 - 1227
  • [4] A New Impedance Measurement System for PZT-Based Structural Health Monitoring
    Baptista, Fabricio Guimaraes
    Vieira Filho, Jozue
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2009, 58 (10) : 3602 - 3608
  • [5] Baptista FG, 2011, ADV PIEZOELECTRIC TR, V1, P105
  • [6] Dry-dressing for ecological grinding
    Cearsolo, X.
    Cabanes, I.
    Sanchez, J. A.
    Pombo, I.
    Portillo, E.
    [J]. JOURNAL OF CLEANER PRODUCTION, 2016, 135 : 633 - 643
  • [7] Conceicao PD, 2016, MATERIA-BRAZIL, V21, P827, DOI [10.1590/s1517-707620160004.0079, 10.1590/S1517-707620160004.0079]
  • [8] Tool condition monitoring of single-point dressing operation by digital signal processing of AE and AI
    D'Addona, Doriana M.
    Conte, Salvatore
    Lopes, Wenderson Nascimento
    de Aguiar, Paulo R.
    Bianchi, Eduardo C.
    Teti, Roberto
    [J]. 11TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2018, 67 : 307 - 312
  • [9] Time-domain analysis based on the electromechanical impedance method for monitoring of the dressing operation
    da Conceicao Junior, Pedro Oliveira
    Ferreira, Fabio Isaac
    de Aguiar, Paulo Roberto
    Batista, Fabricio Guimaraes
    Bianchi, Eduardo Carlos
    D'Addona, Doriana Marilena
    [J]. 11TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2018, 67 : 319 - 324
  • [10] Piezoelectric Transducers Assessed by the Pencil Lead Break for Impedance-Based Structural Health Monitoring
    Dare de Almeida, Vinicius Augusto
    Baptista, Fabricio Guimaraes
    de Aguiar, Paulo Roberto
    [J]. IEEE SENSORS JOURNAL, 2015, 15 (02) : 693 - 702