Real-Time Identification of Hyperspectral Subspaces

被引:19
作者
Torti, Emanuele [1 ]
Acquistapace, Marco [2 ]
Danese, Giovanni [1 ]
Leporati, Francesco [1 ]
Plaza, Antonio [3 ]
机构
[1] Univ Pavia, Dipartimento Ingn Ind & Informaz, I-27100 Pavia, Italy
[2] Positech Consulting Srl, I-20123 Milan, Italy
[3] Univ Extremadura, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Caceres 10071, Spain
关键词
Digital signal processors (DSPs); graphics processing units (GPUs); hyperspectral imaging; hyperspectral signal identification with minimum error (HySime); ENDMEMBER EXTRACTION; IMPLEMENTATION;
D O I
10.1109/JSTARS.2014.2304832
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification of signal subspace is a crucial operation in hyperspectral imagery, enabling a correct dimensionality reduction that often yields gains in algorithm performance and efficiency. This paper presents new parallel implementations of a widely used hyperspectral subspace identification with minimum error (HySime) algorithm on different types of high-performance computing architectures, including general purpose multicore CPUs, graphics processing units (GPUs), and digital signal processors (DSPs). We first developed an optimized serial version of the HySime algorithm using the C programming language, and then we developed three parallel versions: one for a multi-core Intel CPU using the OpenMP API and the ATLAS algebra library, another one using NVIDIA's compute unified device architecture (CUDA) and its basic linear algebra subroutines library (CuBLAS), and another one using a Texas' multicore DSP. Experimental results, based on the processing of simulated and real hyperspectral images of various sizes, show the effectiveness of our GPU and multicore CPU implementations, which satisfy the real-time constraints given by the data acquisition rate. The DSP implementation offers a good tradeoff between low power consumption and computational performance, but it is still penalized by the absence of double precision floating point accuracy and/or suitable mathematical libraries.
引用
收藏
页码:2680 / 2687
页数:8
相关论文
共 25 条
[1]   Real-Time Implementation of the Vertex Component Analysis Algorithm on GPUs [J].
Barberis, A. ;
Danese, G. ;
Leporati, F. ;
Plaza, A. ;
Torti, E. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) :251-255
[2]   Hyperspectral Unmixing on GPUs and Multi-Core Processors: A Comparison [J].
Bernabe, Sergio ;
Sanchez, Sergio ;
Plaza, Antonio ;
Lopez, Sebastian ;
Benediktsson, Jon Atli ;
Sarmiento, Roberto .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) :1386-1398
[3]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[4]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[5]   Intrinsic dimensionality estimation with optimally topology preserving maps [J].
Bruske, J ;
Sommer, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (05) :572-575
[6]  
Castillo M., 2014, J SEL TOPIC IN PRESS
[7]   Constrained band selection for hyperspectral imagery [J].
Chang, Chein-I ;
Wang, Su .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1575-1585
[8]  
Gonzalez A., 2010, EURASIP J ADV SIG PR, V2010, P1
[9]   Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [J].
Green, RO ;
Eastwood, ML ;
Sarture, CM ;
Chrien, TG ;
Aronsson, M ;
Chippendale, BJ ;
Faust, JA ;
Pavri, BE ;
Chovit, CJ ;
Solis, MS ;
Olah, MR ;
Williams, O .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :227-248
[10]   FIELD PROGRAMMABLE GATE ARRAYS (FPGA) FOR PIXEL PURITY INDEX USING BLOCKS OF SKEWERS FOR ENDMEMBER EXTRACTION IN HYPERSPECTRAL IMAGERY [J].
Hsueh, Mingkai ;
Chang, Chein-I .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2008, 22 (04) :408-423