Linking genetic diversity and species diversity through plant-soil feedback

被引:12
作者
Bolin, Lana G. [1 ]
Lau, Jennifer A. [1 ,2 ]
机构
[1] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[2] Indiana Univ, Environm Resilience Inst, Bloomington, IN USA
基金
美国国家科学基金会;
关键词
coexistence; genetic variation; negative feedback; soil microbes; COMMUNITY STRUCTURE; TRIFOLIUM-REPENS; FUNCTIONAL-GROUP; RESISTANCE; GENOTYPE; CONSEQUENCES; POPULATIONS; ADAPTATION; GROWTH; FUNGI;
D O I
10.1002/ecy.3692
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Genetic diversity and species diversity are typically studied in isolation despite theory showing they likely influence one another. Here, we used simplified communities of one or two populations of one or two species to test whether linkages between genetic and species diversity can be mediated by interactions between plants and their soil microbiota, or microbe-mediated plant-soil feedback (PSF). Interspecific PSF promotes the maintenance of species diversity when plants grow better with heterospecific soil microbes than with conspecific microbes. Similarly, intraspecific PSF promotes the maintenance of genetic diversity when plants grow better with heterogenotypic than with congenotypic microbes. In a two-phase greenhouse experiment, we conditioned the soil microbial community with pairs of plants that were either two individuals of the same species (lower species diversity) or one individual of each of two species (higher species diversity), and with pairs of plants that were either two individuals from the same population (lower genetic diversity) or one individual from each of two populations (higher genetic diversity). We then tested the effects of these microbial communities on plant growth in a second phase. We found that higher genetic diversity reduced the ability of interspecific PSF to promote plant species diversity, and for one of our two study species, higher species diversity reduced the ability of intraspecific PSF to promote plant genetic diversity. If these patterns occur in more diverse communities, then our results suggest that PSF may dampen the negative effects of diversity loss by promoting diversity at other levels of biological organization.
引用
收藏
页数:14
相关论文
共 65 条
[1]  
Amarasekare P, 2000, BIOL J LINN SOC, V71, P1
[2]  
Antonovics J, 2003, ECOLOGY, V84, P598, DOI 10.1890/0012-9658(2003)084[0598:TCG]2.0.CO
[3]  
2
[4]  
Antonovics J., 1976, Systematic Botany, V1, P233, DOI 10.2307/2418718
[5]  
Antonovics J., 1992, Plant resistance to herbivores and pathogens: ecology, evolution, and genetics., P426
[6]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[7]   Calculating the uncertainty associated with log response ratios in plant-soil feedback studies [J].
Bates, Sarah E. ;
Wandrag, Elizabeth M. ;
Duncan, Richard P. .
PLANT ECOLOGY, 2020, 221 (09) :829-836
[8]   Plant-soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies [J].
Bauer, Jonathan T. ;
Mack, Keenan M. L. ;
Bever, James D. .
ECOSPHERE, 2015, 6 (09)
[9]   Incorporating the soil community into plant population dynamics: the utility of the feedback approach [J].
Bever, JD ;
Westover, KM ;
Antonovics, J .
JOURNAL OF ECOLOGY, 1997, 85 (05) :561-573
[10]   Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland [J].
Bever, JD ;
Morton, JB ;
Antonovics, J ;
Schultz, PA .
JOURNAL OF ECOLOGY, 1996, 84 (01) :71-82