Uncertainty Relations: Curiosities and Inconsistencies

被引:1
作者
Urbanowski, Krzysztof [1 ]
机构
[1] Univ Zielona Gora, Inst Phys, Ul Prof Z Szafrana 4a, PL-65516 Zielona Gora, Poland
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 10期
关键词
uncertainty relations; uncertainties in PT-symmetric quantum mechanics; QUANTUM; ERROR; HEISENBERG;
D O I
10.3390/sym12101640
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analyzing general uncertainty relations one can find that there can exist such pairs of non-commuting observables A and B and such vectors that the lower bound for the product of standard deviations Delta A and Delta B calculated for these vectors is zero: Delta A . Delta B >= 0. Here we discuss examples of such cases and some other inconsistencies which can be found performing a rigorous analysis of the uncertainty relations in some special cases. As an illustration of such cases matrices (2x2) and (3x3) and the position-momentum uncertainty relation for a quantum particle in the box are considered. The status of the uncertainty relation in PT-symmetric quantum theory and the problems associated with it are also studied.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
[1]   From a particle in a box to the uncertainty relation in a quantum dot and to reflecting walls for relativistic fermions [J].
Al-Hashimi, M. H. ;
Wiese, U. -J. .
ANNALS OF PHYSICS, 2012, 327 (01) :1-28
[2]   The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics [J].
Belloni, M. ;
Robinett, R. W. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 540 (02) :25-122
[3]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[4]   Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Meisinger, PN ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :1973-1983
[5]   Disturbance-Disturbance uncertainty relation: The statistical distinguishability of quantum states determines disturbance [J].
Benitez Rodriguez, E. ;
Arevalo Aguilar, L. M. .
SCIENTIFIC REPORTS, 2018, 8
[6]   Self-adjoint extensions of operators and the teaching of quantum mechanics [J].
Bonneau, G ;
Faraut, J ;
Valent, G .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (03) :322-331
[7]   Error-tradeoff and error-disturbance relations for incompatible quantum measurements [J].
Branciard, Cyril .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (17) :6742-6747
[8]  
Brumfel Geoff, 2012, Nature, DOI [10.1038/NATURE.2012.11394, DOI 10.1038/NATURE.2012.11394]
[9]   Heisenberg's uncertainty principle [J].
Busch, Paul ;
Heinonen, Teiko ;
Lahti, Pekka .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 452 (06) :155-176
[10]   Colloquium: Quantum root-mean-square error and measurement uncertainty relations [J].
Busch, Paul ;
Lahti, Pekka ;
Werner, Reinhard F. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1261-1281