Uncertainty Relations: Curiosities and Inconsistencies

被引:1
作者
Urbanowski, Krzysztof [1 ]
机构
[1] Univ Zielona Gora, Inst Phys, Ul Prof Z Szafrana 4a, PL-65516 Zielona Gora, Poland
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 10期
关键词
uncertainty relations; uncertainties in PT-symmetric quantum mechanics; QUANTUM; ERROR; HEISENBERG;
D O I
10.3390/sym12101640
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analyzing general uncertainty relations one can find that there can exist such pairs of non-commuting observables A and B and such vectors that the lower bound for the product of standard deviations Delta A and Delta B calculated for these vectors is zero: Delta A . Delta B >= 0. Here we discuss examples of such cases and some other inconsistencies which can be found performing a rigorous analysis of the uncertainty relations in some special cases. As an illustration of such cases matrices (2x2) and (3x3) and the position-momentum uncertainty relation for a quantum particle in the box are considered. The status of the uncertainty relation in PT-symmetric quantum theory and the problems associated with it are also studied.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] From a particle in a box to the uncertainty relation in a quantum dot and to reflecting walls for relativistic fermions
    Al-Hashimi, M. H.
    Wiese, U. -J.
    [J]. ANNALS OF PHYSICS, 2012, 327 (01) : 1 - 28
  • [2] The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics
    Belloni, M.
    Robinett, R. W.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 540 (02): : 25 - 122
  • [3] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [4] Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics
    Bender, CM
    Meisinger, PN
    Wang, QH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : 1973 - 1983
  • [5] Disturbance-Disturbance uncertainty relation: The statistical distinguishability of quantum states determines disturbance
    Benitez Rodriguez, E.
    Arevalo Aguilar, L. M.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [6] Self-adjoint extensions of operators and the teaching of quantum mechanics
    Bonneau, G
    Faraut, J
    Valent, G
    [J]. AMERICAN JOURNAL OF PHYSICS, 2001, 69 (03) : 322 - 331
  • [7] Error-tradeoff and error-disturbance relations for incompatible quantum measurements
    Branciard, Cyril
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (17) : 6742 - 6747
  • [8] Brumfel Geoff, 2012, Nature, DOI [10.1038/NATURE.2012.11394, DOI 10.1038/NATURE.2012.11394]
  • [9] Heisenberg's uncertainty principle
    Busch, Paul
    Heinonen, Teiko
    Lahti, Pekka
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 452 (06): : 155 - 176
  • [10] Colloquium: Quantum root-mean-square error and measurement uncertainty relations
    Busch, Paul
    Lahti, Pekka
    Werner, Reinhard F.
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1261 - 1281