On the vanishing of twisted L-functions of elliptic curves

被引:27
|
作者
David, C [1 ]
Fearnley, J [1 ]
Kisilevsky, H [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
elliptic curves; L-functions; random matrix theory;
D O I
10.1080/10586458.2004.10504532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over Q with L-function L-E(s). We use the random matrix model of Katz and Sarnak to develop a heuristic for the frequency of vanishing of the twisted L-functions LE(I,chi), as chi runs over the Dirichlet characters of order 3 (cubic twists). We also compute explicitly the conjecture of Keating and Snaith about the moments of the special values LE(I,chi) in the family of cubic twists. Finally, we present experimental data which is consistent with the conjectures for the moments and for the vanishing in the family of cubic twists of L-E(s).
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条
  • [31] An elliptic curve test of the L-Functions Ratios Conjecture
    Huynh, Duc Khiem
    Miller, Steven J.
    Morrison, Ralph
    JOURNAL OF NUMBER THEORY, 2011, 131 (06) : 1117 - 1147
  • [32] Hybrid subconvexity bounds for twisted L-functions on GL(3)
    Huang, Bingrong
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (03) : 443 - 478
  • [33] L-functions of exponential sums on curves over rings
    Blache, Regis
    FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (03) : 345 - 359
  • [34] Continuous lower bounds for moments of the mixed of twisted L-functions
    Chen, Guohua
    Li, Weiping
    Wang, Tianze
    JOURNAL OF NUMBER THEORY, 2025, 271 : 438 - 457
  • [35] The Second Moment Theory of Families of L-Functions-The Case of Twisted Hecke L-Functions
    Blomer, Valentin
    Fouvry, Etienne
    Kowalski, Emmanuel
    Michel, Philippe
    Miliocvic, Djordje
    Sawin, Will
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 282 (1394) : 1 - +
  • [36] Non-vanishing of automorphic L-functions of prime power level
    Olga Balkanova
    Dmitry Frolenkov
    Monatshefte für Mathematik, 2018, 185 : 17 - 41
  • [37] Non-vanishing of Maass form symmetric square L-functions
    Balkanova, Olga
    Frolenkov, Dmitry
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (02)
  • [38] Non-vanishing of class group L-functions at the central point
    Blomer, V
    ANNALES DE L INSTITUT FOURIER, 2004, 54 (04) : 831 - +
  • [39] NON-VANISHING OF MAASS FORM L-FUNCTIONS AT THE CENTRAL POINT
    Balkanova, Olga
    Huang, Bingrong
    Sodergren, Anders
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) : 509 - 523
  • [40] VANISHING OF DIRICHLET L-FUNCTIONS AT THE CENTRAL POINT OVER FUNCTION FIELDS
    Donepudi, Ravi
    Li, Wanlin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1615 - 1628