Quantum computing with continuous-variable clusters

被引:287
作者
Gu, Mile [1 ]
Weedbrook, Christian [1 ]
Menicucci, Nicolas C. [1 ,2 ,3 ]
Ralph, Timothy C. [1 ]
van Loock, Peter [4 ,5 ]
机构
[1] Univ Queensland, Dept Phys, St Lucia, Qld 4072, Australia
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[4] Univ Erlangen Nurnberg, Max Planck Inst Sci Light, Opt Quantum Informat Theory Grp, D-91058 Erlangen, Germany
[5] Univ Erlangen Nurnberg, Inst Theoret Phys 1, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 06期
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
optical squeezing; quantum computing;
D O I
10.1103/PhysRevA.79.062318
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Continuous-variable cluster states offer a potentially promising method of implementing a quantum computer. This paper extends and further refines theoretical foundations and protocols for experimental implementation. We give a cluster-state implementation of the cubic phase gate through photon detection, which, together with homodyne detection, facilitates universal quantum computation. In addition, we characterize the offline squeezed resources required to generate an arbitrary graph state through passive linear optics. Most significantly, we prove that there are universal states for which the offline squeezing per mode does not increase with the size of the cluster. Simple representations of continuous-variable graph states are introduced to analyze graph state transformations under measurement and the existence of universal continuous-variable resource states.
引用
收藏
页数:16
相关论文
共 43 条
[1]   Generic entanglement and standard form for N-mode pure Gaussian states [J].
Adesso, Gerardo .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)
[2]  
[Anonymous], 1985, Matrix Analysis
[3]  
[Anonymous], ARXIVQUANTPH9807006
[4]  
[Anonymous], 2000, INTRO GRAPH THEORY
[5]  
Barnes R. L., ARXIVQUANTPH0405064
[6]   Efficient classical simulation of continuous variable quantum information processes [J].
Bartlett, SD ;
Sanders, BC ;
Braunstein, SL ;
Nemoto, K .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :4-979044
[7]   Squeezing as an irreducible resource [J].
Braunstein, SL .
PHYSICAL REVIEW A, 2005, 71 (05)
[8]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[9]  
BROADBENT A, ARXIV08074154
[10]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)