A meta-analysis of parton distribution functions

被引:93
作者
Gao, Jun [1 ]
Nadolsky, Pavel [1 ]
机构
[1] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA
关键词
QCD Phenomenology; Hadronic Colliders; 3-LOOP SPLITTING FUNCTIONS; QCD;
D O I
10.1007/JHEP07(2014)035
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A "meta-analysis" is a method for comparison and combination of nonperturbative parton distribution functions (PDFs) in a nucleon obtained with heterogeneous procedures and assumptions. Each input parton distribution set is converted into a "meta-parametrization" based on a common functional form. By analyzing parameters of the meta-parametrizations from all input PDF ensembles, a combined PDF ensemble can be produced that has a smaller total number of PDF member sets than the original ensembles. The meta-parametrizations simplify the computation of the PDF uncertainty in theoretical predictions and provide an alternative to the 2010 PDF4LHC convention for combination of PDF uncertainties. As a practical example, we construct a META ensemble for computation of QCD observables at the Large Hadron Collider using the next-to-next-to-leading order PDF sets from CTEQ, MSTW, and NNPDF groups as the input. The META ensemble includes a central set that reproduces the average of LHC predictions based on the three input PDF ensembles and Hessian eigenvector sets for computing the combined PDF+alpha (s) uncertainty at a common QCD coupling strength of 0.118.
引用
收藏
页数:37
相关论文
共 50 条
[21]   Parton distribution functions in a fit of DIS and related data [J].
Barone, V ;
Pascaud, C ;
Portheault, B ;
Zomer, F .
JOURNAL OF HIGH ENERGY PHYSICS, 2006, (01)
[22]   Perturbative renormalization of quasi-parton distribution functions [J].
Constantinou, Martha ;
Panagopoulos, Haralambos .
PHYSICAL REVIEW D, 2017, 96 (05)
[23]   Global study of nuclear modifications on parton distribution functions [J].
Wang, Rong ;
Chen, Xurong ;
Fu, Qiang .
NUCLEAR PHYSICS B, 2017, 920 :1-19
[24]   Calculation of the transverse parton distribution functions at next-to-next-to-leading order [J].
Thomas Gehrmann ;
Thomas Lübbert ;
Li Lin Yang .
Journal of High Energy Physics, 2014
[25]   Next-to-leading order QCD analysis of parton distribution functions with LHC data [J].
Vafaee, A. ;
Khorramian, A. .
NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2017, 282 :32-36
[26]   PARTON DISTRIBUTION FUNCTIONS IN DIFFRACTIVE DEEP INELASTIC SCATTERING [J].
Monfared, S. Taheri ;
Khorramian, A. ;
Tehrani, S. Atashbar .
QUANTUM MECHANICS, ELEMENTARY PARTICLES, QUANTUM COSMOLOGY AND COMPLEXITY, 2011, :411-418
[27]   Intrinsic charm parton distribution functions from CTEQ-TEA global analysis [J].
Dulat, Sayipjamal ;
Hou, Tie-Jiun ;
Gao, Jun ;
Huston, Joey ;
Pumplin, Jon ;
Schmidt, Carl ;
Stump, Daniel ;
Yuan, C. -P. .
PHYSICAL REVIEW D, 2014, 89 (07)
[28]   Next-to-Next-to-Leading Order Global Analysis of Polarized Parton Distribution Functions [J].
Borsa, Ignacio ;
Stratmann, Marco ;
Vogelsang, Werner ;
de Florian, Daniel ;
Sassot, Rodolfo .
PHYSICAL REVIEW LETTERS, 2024, 133 (15)
[29]   EPS09-A new generation of NLO and LO nuclear parton distribution functions [J].
Eskola, K. J. ;
Paukkunen, H. ;
Salgado, C. A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04)
[30]   Neural-network analysis of Parton Distribution Functions from Ioffe-time pseudodistributions [J].
Luigi Del Debbio ;
Tommaso Giani ;
Joseph Karpie ;
Kostas Orginos ;
Anatoly Radyushkin ;
Savvas Zafeiropoulos .
Journal of High Energy Physics, 2021