The Generalized Classification of Unmanned Air Vehicles

被引:0
|
作者
Korchenko, A. G. [1 ]
Illyash, O. S. [1 ]
机构
[1] Natl Aviat Univ, Informat Technol Secur Dept, Kiev, Ukraine
关键词
Unmanned Air Vehicle; Unmanned Air Vehicle System; classification of UAV; fundamental features of UAV;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
According to a generalization of common classifications and performance characteristics of existing Unmanned Air Vehicles, this article calls attention to its classification which is based on 16 the fundamental features: 1) aircraft applications; 2) type of a control system; 3) flight rules; 4) airspace classification; 5) aircraft types; 6) wing types; 7) takeoff/landing direction; 8) types of take-off/landing; 9) aircraft engine types; 10) fuel system; 11) fuel tank types; 12) number of exploitations; 13) category (according to the weight and maximum range of flight UAV); 14) flight radius; 15) flight altitude; 16) Aircraft Functions.
引用
收藏
页码:28 / 34
页数:7
相关论文
共 50 条
  • [41] Application of Portfolio Methods for the Classification of Unmanned Aerial Vehicles
    Duchaczek, Artur
    Skorupka, Dariusz
    Waniewska, Agnieszka
    Kuchta, Dorota
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [42] Architecture, Classification, and Applications of Contemporary Unmanned Aerial Vehicles
    Alghamdi, Yousef
    Munir, Arslan
    La, Hung Manh
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2021, 10 (06) : 9 - 20
  • [43] MODELING TRAJECTORIES FOR PATROLLING AND OBSERVATION WITH UNMANNED AIR VEHICLES
    Getsov, Petar
    Bo, Wang
    Jordanov, Dimitar
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (10): : 1374 - 1379
  • [44] Hydrogen Fuel Cells for Small Unmanned Air Vehicles
    Swider-Lyons, Karen E.
    Stroman, Richard O.
    Gould, Benjamin D.
    Rodgers, Joseph A.
    MacKrell, Joseph
    Schuette, Michael
    Page, Gregory
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 963 - 972
  • [45] Air pollution assessment by using unmanned aerial vehicles
    Zboina, Jacek
    Zawistowski, Maciej
    Sowa, Tomasz
    PRZEMYSL CHEMICZNY, 2020, 99 (07): : 988 - 993
  • [46] Experimental Studies for Enhancing Endurance of Unmanned Air Vehicles
    Sudha
    Patange, Siva Subba Rao
    Raja, S.
    Aravindu, B.
    Raghavendra, L.
    Devi, Sowmia M.
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 216 - 219
  • [47] Coordinated target assignment and intercept for unmanned air vehicles
    Beard, RW
    McLain, TW
    Goodrich, M
    2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 2581 - 2586
  • [48] Cooperative electronic attack using unmanned air vehicles
    Mears, MJ
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 3339 - 3347
  • [49] QinetiQ to Integrate Unmanned Air, Sea and Subsea Vehicles
    Mumford, Richard
    MICROWAVE JOURNAL, 2016, 59 (10) : 45 - 46
  • [50] Development of a flight test system for unmanned air vehicles
    Hallberg, E
    Kaminer, I
    Pascoal, A
    IEEE CONTROL SYSTEMS MAGAZINE, 1999, 19 (01): : 55 - 65