Ion Transport in Solvated Sodium-Ion Conducting Gel Polymer Electrolytes

被引:6
|
作者
Kuray, Preeya [1 ]
Mei, Wenwen [1 ]
Sheffield, Sarah E. [1 ]
Sengeh, Joseph [1 ]
Pulido, Carlos Rolando Fernandez [1 ]
Capparelli, Clara [2 ]
Hickey, Robert J. [1 ]
Hickner, Michael A. [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Chem, University Pk, PA 16801 USA
来源
关键词
single ion conductors; gel polymer electrolytes; coordinating solvents; sodium-ion electrolyte; ionomers; solid polymer electrolyte; LITHIUM-ION; THERMODYNAMIC PROPERTIES; DIELECTRIC-CONSTANTS; PROPYLENE CARBONATE; MOLECULAR MOBILITY; BATTERIES; PLASTICIZER; DENSITY; ADIPATE; CATION;
D O I
10.3389/fenrg.2020.569387
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Single ion conducting gel polymer electrolytes (GPEs) are characterized as having a certain amount of ionic liquid or solvent incorporated into a single ion-conducting polymer matrix and may afford the advantages of high conductivity and low electrolyte polarization under battery operation. Single ion conducting polymers often suffer from low conductivity due to their reliance on polymer segmental motion to achieve sufficient ion mobility. However, by incorporating specific solvents into a single ion conducting matrix, mobility of the polymer can be enhanced while still maintaining the advantages of single ion conduction. Although many of the solvents used to swell GPEs are mixtures of flammable organic solvents (such as dimethyl carbonate), there are many potential non-reactive, low vapor pressure solvents that could effectively solvate alkali-ion based GPEs and plasticize the polymer matrix to enhance ion conductivity. Adipate-based solvents are a group of non-volatile plasticizers with low viscosities and low vapor pressures at room temperature derived from adipic acid. The ester groups in these solvents may effectively solvate alkali ions such as Na+, leading to higher conductivity, while circumventing issues of flammability found in current alkali-ion conducting electrolytes. This study investigates the properties of sodium-ion conducting GPEs that have been swollen with varying adipate-based solvents and the subsequent dielectric response from the solvent addition. Dielectric relaxation spectroscopy was used to characterize the Na+ conductivity, static dielectric constant, ion-conducting content, and mobility of the membranes before and after the non-volatile solvent uptake. Understanding this relationship will pave the path toward safer, more efficient solid-state polymer electrolytes for battery applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Sodium-ion conducting polymer electrolytes
    Zhi-Yong Li
    Zhuo Li
    Jia-Long Fu
    Xin Guo
    Rare Metals, 2023, 42 (01) : 1 - 16
  • [2] Sodium-ion conducting polymer electrolytes
    Zhi-Yong Li
    Zhuo Li
    Jia-Long Fu
    Xin Guo
    Rare Metals, 2023, 42 : 1 - 16
  • [3] Sodium-ion conducting polymer electrolytes
    Li, Zhi-Yong
    Li, Zhuo
    Fu, Jia-Long
    Guo, Xin
    RARE METALS, 2023, 42 (01) : 1 - 16
  • [4] Studies on Sodium Ion Conducting Gel Polymer Electrolytes
    Isa, Khairul Bahiyah Md
    Othman, Lisani
    Zainol, Nurul Husna
    Samin, Siti Mariam
    Gie, Chong Woon
    Osman, Zurina
    Arof, Abdul Kariem Mohd
    ADVANCED MATERIALS ENGINEERING AND TECHNOLOGY II, 2014, 594-595 : 786 - +
  • [5] Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries
    Zheng, Jinyun
    Li, Wenjie
    Liu, Xinxin
    Zhang, Jiawei
    Feng, Xiangming
    Chen, Weihua
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (04)
  • [6] Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries
    Jinyun Zheng
    Wenjie Li
    Xinxin Liu
    Jiawei Zhang
    Xiangming Feng
    Weihua Chen
    Energy & Environmental Materials , 2023, (04) : 355 - 383
  • [7] Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries
    Jinyun Zheng
    Wenjie Li
    Xinxin Liu
    Jiawei Zhang
    Xiangming Feng
    Weihua Chen
    Energy & Environmental Materials, 2023, 6 (04) : 355 - 383
  • [8] Polymer electrolytes for sodium-ion batteries
    Gebert, Florian
    Knott, Jonathan
    Gorkin, Robert, III
    Chou, Shu-Lei
    Dou, Shi-Xue
    ENERGY STORAGE MATERIALS, 2021, 36 : 10 - 30
  • [9] Development of Sodium-Ion Conducting Sulfide Electrolytes
    Hayashi, Akitoshi
    ELECTROCHEMISTRY, 2023, 91 (10)
  • [10] Ion transport in sodium ion conducting solid electrolytes
    Fergus, Jeffrey W.
    SOLID STATE IONICS, 2012, 227 : 102 - 112