Novel mutation in FBN1 causes ectopia lentis and varicose great saphenous vein in one Chinese autosomal dominant family

被引:1
作者
Fu, Qing [1 ,7 ]
Liu, Peng [2 ]
Lu, Qingsheng [3 ]
Wang, Feng [4 ]
Wang, Hui [4 ]
Shen, Wei [5 ]
Xu, Fei [1 ]
Liu, Lin [6 ]
Sergeev, Yuri V. [8 ]
Sui, Ruifang [1 ]
机构
[1] Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Ophthalmol, Beijing 100021, Peoples R China
[2] Second Mil Med Univ, Changhai Hosp, Dept Surg, Shanghai, Peoples R China
[3] Second Mil Med Univ, Changhai Hosp, Dept Vasc Surg, Shanghai, Peoples R China
[4] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[5] Second Mil Med Univ, Changhai Hosp, Dept Ophthalmol, Shanghai, Peoples R China
[6] Shanghai Jiao Tong Univ, Renji Hosp, Dept Ophthalmol, Shanghai 200030, Peoples R China
[7] Fudan Univ, North Huashan Hosp, Dept Ophthalmol, Shanghai 200433, Peoples R China
[8] NEI, Ophthalm Genet & Visual Funct Branch, NIH, Bethesda, MD 20892 USA
关键词
MARFAN-SYNDROME; FIBRILLIN-1; GENE; IDENTIFICATION; PHENOTYPE; GENOTYPE; PROBANDS; DOMAIN;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Purpose: To identify genetic defects in a Chinese family with ectopia lentis (EL) and varicose great saphenous vein (GSV) and to analyze the correlations between phenotype and genotype. Methods: Twenty-two (12 affected subjects and ten unaffected subjects) among 53 members of a Chinese family underwent complete physical, ophthalmic, and cardiovascular examinations. Genomic DNA was extracted from the leukocytes in the subjects' peripheral blood. A minimum interval was achieved with linkage study and haplotype analysis. All 65 exons and the flanking intronic regions of fibrillin-1 (FBN1) were amplified with PCR and screened for mutations with direct Sanger sequencing. Molecular modeling was analyzed in an in silico study. Results: The linkage study showed a strong cosegregation signal on chromosome 15. The non-parametric linkage analysis yielded a maximum score of 29.1(p<0.00001), and the parametric logarithm of the odds (LOD) score was 3.6. The minimum interval of the shared haplotype was rs1565863-rs877228. The best candidate gene in this region was FBN1. A novel mutation, c.3928G>A, p.1310G>S in exon 31, was identified in FBN1 and cosegregated well in the family. We applied molecular modeling to show the effect of this mutation on the fibrillin-1 structure. The mutation significantly distorts the calcium coordination, decreases the binding of the calcium ion in that motif, and affects the local calcium-binding epidermal growth factor (cbEGF) interface that depends on Ca binding. Conclusions: FBN1-associated fibrillinopathies are a group of diseases with dynamic phenotype changes. Novel mutation p.1310G>S was first reported to cause Marfan syndrome (MFS). Our results expand the mutation spectrum in FBN1 and enhance our knowledge of genotype-phenotype correlations underlying FBN1 mutations.
引用
收藏
页码:812 / 821
页数:10
相关论文
共 28 条
[1]  
Arnold Konstantin, 2009, Journal of Structural and Functional Genomics, V10, P1, DOI 10.1007/s10969-008-9048-5
[2]   Marfan syndrome in the third Millennium [J].
Collod-Béroud, G ;
Boileau, C .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2002, 10 (11) :673-681
[3]  
DePaepe A, 1996, AM J MED GENET, V62, P417, DOI 10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO
[4]  
2-R
[5]  
Dong JM, 2012, MOL VIS, V18, P81
[6]   Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations:: An international study [J].
Faivre, L. ;
Collod-Beroud, G. ;
Loeys, B. L. ;
Child, A. ;
Binquet, C. ;
Gautier, E. ;
Callewaert, B. ;
Arbustini, E. ;
Mayer, K. ;
Arslan-Kirchner, M. ;
Kiotsekoglou, A. ;
Comeglio, P. ;
Marziliano, N. ;
Dietz, H. C. ;
Halliday, D. ;
Beroud, C. ;
Bonithon-Kopp, C. ;
Claustres, M. ;
Muti, C. ;
Plauchu, H. ;
Robinson, P. N. ;
Ades, L. C. ;
Biggin, A. ;
Benetts, B. ;
Brett, M. ;
Holman, K. J. ;
De Backer, J. ;
Coucke, P. ;
Francke, U. ;
De Paepe, A. ;
Jondeau, G. ;
Boileau, C. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (03) :454-466
[7]   The new Ghent criteria for Marfan syndrome: what do they change? [J].
Faivre, L. ;
Collod-Beroud, G. ;
Ades, L. ;
Arbustini, E. ;
Child, A. ;
Callewaert, B. L. ;
Loeys, B. ;
Binquet, C. ;
Gautier, E. ;
Mayer, K. ;
Arslan-Kirchner, M. ;
Grasso, M. ;
Beroud, C. ;
Hamroun, D. ;
Bonithon-Kopp, C. ;
Plauchu, H. ;
Robinson, P. N. ;
De Backer, J. ;
Couckek, P. ;
Francke, U. ;
Bouchot, O. ;
Wolf, J. E. ;
Stheneur, C. ;
Hanna, N. ;
Detaint, D. ;
De Paepe, A. ;
Boileau, C. ;
Jondeauv, G. .
CLINICAL GENETICS, 2012, 81 (05) :433-442
[8]  
FRANCKE U, 1995, AM J HUM GENET, V56, P1287
[9]   Genetic Dissection of Marfan Syndrome and Related Connective Tissue Disorders: An Update 2012 [J].
Hoffjan, S. .
MOLECULAR SYNDROMOLOGY, 2012, 3 (02) :47-58
[10]   Mutation spectrum of the fibrillin-1 (FBN1) gene in Taiwanese patients with Marfan syndrome [J].
Hung, Chia-Cheng ;
Lin, Shin-Yu ;
Lee, Chien-Nan ;
Cheng, Hui-Yu ;
Lin, Shuan-Pei ;
Chen, Ming-Ren ;
Chen, Chih-Ping ;
Chang, Chien-Hui ;
Lin, Chiou-Ya ;
Yu, Chih-Chieh ;
Chiu, Hsin-Hui ;
Cheng, Wen-Fang ;
Ho, Hong-Nerng ;
Niu, Dau-Ming ;
Su, Yi-Ning .
ANNALS OF HUMAN GENETICS, 2009, 73 :559-567