Lovasz-Saks-Schrijver ideals and parity binomial edge ideals of graphs

被引:7
作者
Kumar, Arvind [1 ,2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
ORTHOGONAL REPRESENTATIONS; REGULARITY; REES;
D O I
10.1016/j.ejc.2020.103274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph on n vertices. Let L-G and I-G denote the Lovasz-Saks-Schrijver(LSS) ideal and parity binomial edge ideal of G in the polynomial ring S = K[x(1),..., x(n), y(1),..., y(n)] respectively. We classify graphs whose LSS ideals and parity binomial edge ideals are complete intersections. We also classify graphs whose LSS ideals and parity binomial edge ideals are almost complete intersections, and we prove that their Rees algebra is Cohen-Macaulay. We compute the second graded Betti number and obtain a minimal presentation of LSS ideals of trees and odd unicyclic graphs. We also obtain an explicit description of the defining ideal of the symmetric algebra of LSS ideals of trees and odd unicyclic graphs. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 28 条
[1]   Binomial edge ideals of bipartite graphs [J].
Bolognini, Davide ;
Macchia, Antonio ;
Strazzanti, Francesco .
EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 :1-25
[2]  
Bruns W., 1993, Cambridge Studies in Advanced Mathematics, V39
[3]   Lovasz-Saks-Schrijver ideals and coordinate sections of determinantal varieties [J].
Conca, Aldo ;
Welker, Volkmar .
ALGEBRA & NUMBER THEORY, 2019, 13 (02) :455-484
[4]   Kahler differentials for points in Pn [J].
de Dominicis, G ;
Kreuzer, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 141 (02) :153-173
[5]  
Eisenbud D., 1995, GRADUATE TEXTS MATH, V150
[6]   COHEN-MACAULAY BINOMIAL EDGE IDEALS [J].
Ene, Viviana ;
Herzog, Juergen ;
Hibi, Takayuki .
NAGOYA MATHEMATICAL JOURNAL, 2011, 204 :57-68
[7]   ON REES AND FORM RINGS OF ALMOST COMPLETE-INTERSECTIONS [J].
HERRMANN, M ;
RIBBE, J ;
ZARZUELA, S .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (02) :647-664
[8]  
Herrmann M., 1989, QUEENS PAPERS PURE A, V83, P37
[9]   On the ideal of orthogonal representations of a graph in R2 [J].
Herzog, Juergen ;
Macchia, Antonio ;
Madani, Sara Saeedi ;
Welker, Volkmar .
ADVANCES IN APPLIED MATHEMATICS, 2015, 71 :146-173
[10]  
Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6