Stationary "nose-like" ion spectral structures in the inner magnetosphere: Observations by Van Allen probes and simulations

被引:2
|
作者
Li, S. Y. [1 ,2 ,3 ]
Luo, H. [1 ,2 ,3 ]
Kronberg, E. A. [4 ,5 ]
Ferradas, C. P. [6 ,7 ]
Du, A. M. [1 ,2 ,3 ,9 ]
Ge, Y. S. [1 ,2 ,3 ]
Zhang, Y. [1 ,3 ]
Chen, G. X. [1 ,2 ,3 ]
Deng, H. [8 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Earth & Planetary Phys, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Geosci Sch, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 10029, Peoples R China
[4] Max Planck Inst Solar Syst Res, Gottingen, Germany
[5] Ludwig Maximilians Univ Munchen, Dept Earth & Environm Sci, Munich, Germany
[6] NASA, Geospace Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
[7] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[8] Earthquake Adm Jiangxi Prov, Nanchang, Jiangxi, Peoples R China
[9] Macau Univ Sci & Technol, Macau, Peoples R China
基金
国家重点研发计划;
关键词
Nose" ion spectral structure; Ion backward tracing; Van Allen probes; RING CURRENT; ELECTRIC-FIELD; ENERGETIC PARTICLE; MAGNETIC-FIELD; MODEL; FEATURES; GAPS;
D O I
10.1016/j.jastp.2020.105390
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The "Nose-like" ion spectral structures are characterized by the deep inward penetration of ions from the near -Earth plasma sheet and can extend to low L shells in the inner magnetosphere. The stationary "Nose-like" ion structures are believed to be driven by the stationary electric and magnetic field during quiet geomagnetic times. However, the global distribution picture, especially for each MLT, for both single and double stationary nose structures is still not reached. In this study, we statistically investigate the stationary "Nose-like" ion spectral structure based on 2 years of Van Allen probes observations. We find a clear MLT dependence of the number of stationary noses, with a higher occurrence of single-nose structures from 13 to 03 MLT, while a higher occurrence of double-nose structures from 03 to 13MLT. This is confirmed by calculating the backward drift time using backward tracing method based on the dipole magnetic field and Weimer 96 electric field model for each MLT. Simulation results indicate that the ion spectral gap, which is formed due to long drift time or existence of the ion forbidden region, controls the nose structure at different MLT during geomagnetic quiet times. A possible physical explanation of this MLT dependence can be a combination of the ion spectral gaps created by the region of long drift time in the dayside within the nose energy range and the persistent dawn-dusk asymmetries in the convection electric field.
引用
收藏
页数:10
相关论文
共 30 条
  • [21] Statistical study of "trunk-like" heavy ion structures in the inner magnetosphere
    Zhang, Hao
    Wang, YaBing
    Lu, JianYong
    EARTH AND PLANETARY PHYSICS, 2022, 6 (04) : 339 - 349
  • [22] The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm
    Yu, Yiqun
    Jordanova, Vania
    Welling, Dan
    Larsen, Brian
    Claudepierre, Seth G.
    Kletzing, Craig
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (04) : 1126 - 1132
  • [23] Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations
    Fu, Xiangrong
    Cowee, Misa M.
    Friedel, Reinhard H.
    Funsten, Herbert O.
    Gary, S. Peter
    Hospodarsky, George B.
    Kletzing, Craig
    Kurth, William
    Larsen, Brian A.
    Liu, Kaijun
    MacDonald, Elizabeth A.
    Min, Kyungguk
    Reeves, Geoffrey D.
    Skoug, Ruth M.
    Winske, Dan
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (10) : 8288 - 8298
  • [24] Simultaneously FormedWedge-Like Structures of Different Ion Species Deep in the Inner Magnetosphere
    Ren, Jie
    Zong, Q. G.
    Yue, C.
    Zhou, X. Z.
    Fu, S. Y.
    Spence, H. E.
    Funsten, H. O.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (12)
  • [25] Non-Adiabatic Acceleration of Injected Electrons in the Inner Magnetosphere: Joint Observations by the Van Allen Probe and the BeiDa Imaging Electron Spectrometer
    Chen, Xingran
    Zhang, Hui
    Zong, Qiugang
    Zhou, Xuzhi
    Zou, Hong
    Wang, Yongfu
    Yue, Chao
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (21)
  • [26] Global morphology of NWC and NAA very-low-frequency transmitter signals in the inner magnetosphere : A survey using Van Allen Probes EMFISIS measurements
    Xiang Zheng
    Lin Xianhao
    Chen Wei
    Wang Yong
    Lu Peng
    Gong Wenying
    Ma Wenchen
    Hua Man
    Liu Yangxizi
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2021, 64 (11): : 3860 - 3869
  • [27] Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations
    Shprits, Yuri Y.
    Kellerman, Adam C.
    Drozdov, Alexander Y.
    Spence, Harlan E.
    Reeves, Geoffrey D.
    Baker, Daniel N.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (22) : 9600 - 9608
  • [28] Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave-particle interactions in the pre-midnight inner magnetosphere
    Korotova, G. I.
    Sibeck, D. G.
    Tahakashi, K.
    Dai, L.
    Spence, H. E.
    Kletzing, C. A.
    Wygant, J. R.
    Manweiler, J. W.
    Moya, P. S.
    Hwang, K. -J.
    Redmon, R. J.
    ANNALES GEOPHYSICAE, 2015, 33 (08) : 955 - 964
  • [29] Conjugate Ionosphere-Magnetosphere Observations of a Sub-Alfvenic Compressional Intermediate-m Wave: A Case Study Using EKB Radar and Van Allen Probes
    Mager, Olga, V
    Chelpanov, Maksim A.
    Mager, Pavel N.
    Klimushkin, Dmitri Yu
    Berngardt, Oleg, I
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (05) : 3276 - 3290
  • [30] The role of small-scale ion injections in the buildup of Earth's ring current pressure: Van Allen Probes observations of the 17 March 2013 storm
    Gkioulidou, Matina
    Ukhorskiy, A. Y.
    Mitchell, D. G.
    Sotirelis, T.
    Mauk, B. H.
    Lanzerotti, L. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (09) : 7327 - 7342