Stationary "nose-like" ion spectral structures in the inner magnetosphere: Observations by Van Allen probes and simulations

被引:2
|
作者
Li, S. Y. [1 ,2 ,3 ]
Luo, H. [1 ,2 ,3 ]
Kronberg, E. A. [4 ,5 ]
Ferradas, C. P. [6 ,7 ]
Du, A. M. [1 ,2 ,3 ,9 ]
Ge, Y. S. [1 ,2 ,3 ]
Zhang, Y. [1 ,3 ]
Chen, G. X. [1 ,2 ,3 ]
Deng, H. [8 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Earth & Planetary Phys, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Geosci Sch, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 10029, Peoples R China
[4] Max Planck Inst Solar Syst Res, Gottingen, Germany
[5] Ludwig Maximilians Univ Munchen, Dept Earth & Environm Sci, Munich, Germany
[6] NASA, Geospace Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
[7] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[8] Earthquake Adm Jiangxi Prov, Nanchang, Jiangxi, Peoples R China
[9] Macau Univ Sci & Technol, Macau, Peoples R China
基金
国家重点研发计划;
关键词
Nose" ion spectral structure; Ion backward tracing; Van Allen probes; RING CURRENT; ELECTRIC-FIELD; ENERGETIC PARTICLE; MAGNETIC-FIELD; MODEL; FEATURES; GAPS;
D O I
10.1016/j.jastp.2020.105390
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The "Nose-like" ion spectral structures are characterized by the deep inward penetration of ions from the near -Earth plasma sheet and can extend to low L shells in the inner magnetosphere. The stationary "Nose-like" ion structures are believed to be driven by the stationary electric and magnetic field during quiet geomagnetic times. However, the global distribution picture, especially for each MLT, for both single and double stationary nose structures is still not reached. In this study, we statistically investigate the stationary "Nose-like" ion spectral structure based on 2 years of Van Allen probes observations. We find a clear MLT dependence of the number of stationary noses, with a higher occurrence of single-nose structures from 13 to 03 MLT, while a higher occurrence of double-nose structures from 03 to 13MLT. This is confirmed by calculating the backward drift time using backward tracing method based on the dipole magnetic field and Weimer 96 electric field model for each MLT. Simulation results indicate that the ion spectral gap, which is formed due to long drift time or existence of the ion forbidden region, controls the nose structure at different MLT during geomagnetic quiet times. A possible physical explanation of this MLT dependence can be a combination of the ion spectral gaps created by the region of long drift time in the dayside within the nose energy range and the persistent dawn-dusk asymmetries in the convection electric field.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Ion nose spectral structures observed by the Van Allen Probes
    Ferradas, C. P.
    Zhang, J. -C.
    Spence, H. E.
    Kistler, L. M.
    Larsen, B. A.
    Reeves, G.
    Skoug, R.
    Funsten, H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (12) : 12025 - 12046
  • [2] Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations
    Nose, M.
    Oimatsu, S.
    Keika, K.
    Kletzing, C. A.
    Kurth, W. S.
    De Pascuale, S.
    Smith, C. W.
    MacDowall, R. J.
    Nakano, S.
    Reeves, G. D.
    Spence, H. E.
    Larsen, B. A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (02) : 1182 - 1196
  • [3] "Trunk-like" heavy ion structures observed by the Van Allen Probes
    Zhang, J. -C.
    Kistler, L. M.
    Spence, H. E.
    Wolf, R. A.
    Reeves, G.
    Skoug, R.
    Funsten, H.
    Larsen, B. A.
    Niehof, J. T.
    MacDonald, E. A.
    Friedel, R.
    Ferradas, C. P.
    Luo, H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (10) : 8738 - 8748
  • [4] Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere
    Usanova, M. E.
    Malaspina, D. M.
    Jaynes, A. N.
    Bruder, R. J.
    Mann, I. R.
    Wygant, J. R.
    Ergun, R. E.
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (17) : 8827 - 8834
  • [5] Banana Current in the Inner Magnetosphere Observed by Van Allen Probes
    Wang, Tong-Hui
    Zhang, Xiao-Xin
    He, Fei
    Lv, Jing-Tian
    Zong, Qiu-Gang
    Fu, Hui-Shan
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (12)
  • [6] Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations
    Jordanova, V. K.
    Yu, Y.
    Niehof, J. T.
    Skoug, R. M.
    Reeves, G. D.
    Kletzing, C. A.
    Fennell, J. F.
    Spence, H. E.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (08) : 2687 - 2694
  • [7] Simulations of Van Allen Probes Plasmaspheric Electron Density Observations
    De Pascuale, S.
    Jordanova, V. K.
    Goldstein, J.
    Kletzing, C. A.
    Kurth, W. S.
    Thaller, S. A.
    Wygant, J. R.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (11) : 9453 - 9475
  • [8] Analyzing EMIC Waves in the Inner Magnetosphere Using Long-Term Van Allen Probes Observations
    Chen, Huayue
    Gao, Xinliang
    Lu, Quanming
    Wang, Shui
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (09) : 7402 - 7412
  • [9] Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission
    Gerrard, Andrew
    Lanzerotti, Louis
    Gkioulidou, Matina
    Mitchell, Donald
    Manweiler, Jerry
    Bortnik, Jacob
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (04) : 1100 - 1105
  • [10] Ionospheric Oxygen Outflows Directly Injected Into the Inner Magnetosphere: Van Allen Probes Statistics
    Liu, Z-Y
    Zong, Q-G
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (10)