Localization and primary decomposition of polynomial ideals

被引:80
作者
Shimoyama, T
Yokoyama, K
机构
[1] Fujitsu Laboratories, ISIS, Shizuoka 410-03, 140 Miyamoto, Numazu-shi
关键词
D O I
10.1006/jsco.1996.0052
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose a new method for primary decomposition of a polynomial ideal, not necessarily zero-dimensional, and report on a detailed study for its practical implementation. In our method, we introduce two key techniques, effective localization and fast elimination of redundant components, by which we can get a good performance for several examples. The performance of our method is examined by comparison with other existing methods based on practical experiments. (C) 1996 Academic Press Limited
引用
收藏
页码:247 / 277
页数:31
相关论文
共 25 条
[1]  
Aho A.V., 1974, The Design and Analysis of Computer Algorithms
[2]  
ALONSO ME, 1990, SPRINGER LNCS, V508, P208
[3]  
Atiyah M. F., 1969, Introduction To Commutative Algebra, Addison-Wesley series in mathematics
[4]  
Backelin J., 1991, Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation. ISSAC '91, P103, DOI 10.1145/120694.120708
[5]  
Becker T., 1993, GROBNER BASES
[6]  
BOEGE W, 1986, J SYMB COMPUT, V1, P83
[7]  
BUCHBERGER B, 1985, MULTIDIMENSIONAL SYS, P184
[8]  
Buchberger B., 1965, THESIS U INNSBRUCK
[9]   DIRECT METHODS FOR PRIMARY DECOMPOSITION [J].
EISENBUD, D ;
HUNEKE, C ;
VASCONCELOS, W .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :207-235
[10]   GROBNER BASES AND PRIMARY DECOMPOSITION OF POLYNOMIAL IDEALS [J].
GIANNI, P ;
TRAGER, B ;
ZACHARIAS, G .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (2-3) :149-167