The spatial and temporal complexity of the Holocene thermal maximum

被引:439
作者
Renssen, H. [1 ]
Seppa, H. [2 ]
Heiri, O. [3 ]
Roche, D. M. [4 ]
Goosse, H. [5 ]
Fichefet, T. [5 ]
机构
[1] Vrije Univ Amsterdam, Fac Earth & Life Sci, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands
[2] Univ Helsinki, Dept Geol, FI-00014 Helsinki, Finland
[3] Univ Utrecht, Inst Environm Biol, NL-3584 CD Utrecht, Netherlands
[4] UVSQ, CNRS, INSU, Lab CEA,LSCE,IPSL, F-91191 Gif Sur Yvette, France
[5] Catholic Univ Louvain, Inst Astron & Geophys G Lemaitre, B-1348 Louvain, Belgium
关键词
KA BP EVENT; CLIMATE-CHANGE; MODEL; DEGLACIATION; SURFACE;
D O I
10.1038/NGEO513
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Holocene thermal maximum, a period of relatively warm climate between 11,000 and 5,000 years ago(1,2), is most clearly recorded in the middle and high latitudes(2,3) of the Northern Hemisphere, where it is generally associated with the local orbitally forced summer insolation maximum. However, proxy-based reconstructions have shown that both the timing and magnitude of the warming vary substantially between different regions(2-4), suggesting the involvement of extra feedbacks and forcings. Here, we simulate the Holocene thermal maximum in a coupled global ocean-atmosphere-vegetation model. We find that before 7,000 years ago, summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. Our simulations suggest that the cool conditions arose from a combination of the inhibition of Labrador Sea deep convection by the flux of meltwater from the ice sheet, which weakened northward heat transport by the ocean, and the high surface albedo of the ice sheet. We thus conclude that interglacial climate is highly sensitive to relatively small changes in ice-sheet configuration.
引用
收藏
页码:410 / 413
页数:4
相关论文
共 28 条
[1]  
BERGER AL, 1978, J ATMOS SCI, V35, P2362, DOI [10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO
[2]  
2, 10.1016/0033-5894(78)90064-9]
[3]   Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model [J].
Brovkin, V ;
Bendtsen, J ;
Claussen, M ;
Ganopolski, A ;
Kubatzki, C ;
Petoukhov, V ;
Andreev, A .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (04)
[4]   Rapid early Holocene deglaciation of the Laurentide ice sheet [J].
Carlson, Anders E. ;
Legrande, Allegra N. ;
Oppo, Delia W. ;
Came, Rosemarie E. ;
Schmidt, Gavin A. ;
Anslow, Faron S. ;
Licciardi, Joseph M. ;
Obbink, Elizabeth A. .
NATURE GEOSCIENCE, 2008, 1 (09) :620-624
[5]   Past temperatures directly from the Greenland Ice Sheet [J].
DahlJensen, D ;
Mosegaard, K ;
Gundestrup, N ;
Clow, GD ;
Johnsen, SJ ;
Hansen, AW ;
Balling, N .
SCIENCE, 1998, 282 (5387) :268-271
[6]   Provincialism in trends and high frequency changes in the northwest North Atlantic during the Holocene [J].
de Vernal, Anne ;
Hillaire-Marcel, Claude .
GLOBAL AND PLANETARY CHANGE, 2006, 54 (3-4) :263-290
[7]   Modelling the climate of the last millennium: What causes the differences between simulations? [J].
Goosse, H ;
Crowley, TJ ;
Zorita, E ;
Ammann, CM ;
Renssen, H ;
Driesschaert, E .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (06) :1-4
[8]   Importance of ice-ocean interactions for the global ocean circulation: A model study [J].
Goosse, H ;
Fichefet, T .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1999, 104 (C10) :23337-23355
[9]   Centennial to millennial scale Holocene climate-deep water linkage in the North Atlantic [J].
Hall, IR ;
Bianchi, GG ;
Evans, JR .
QUATERNARY SCIENCE REVIEWS, 2004, 23 (14-15) :1529-1536
[10]   Lake Agassiz final drainage event in the northwest North Atlantic [J].
Hillaire-Marcel, C. ;
de Vernal, Anne ;
Piper, David J. W. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (15)