Kinetic study of MWCNT and MWCNT@P3HT hybrid thermal decomposition under isothermal and non-isothermal conditions using the artificial neural network and isoconversional methods

被引:11
作者
Ferreira, Luiza De L. [1 ]
Medeiros, Felipe S. [1 ]
Araujo, Barbara C. R. [1 ]
Gomes, Milton S. [2 ]
Rocco, Maria Luiza M. [2 ]
Sebastiao, Rita C. O. [1 ]
Calado, Hallen D. R. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Rio de Janeiro, Inst Chem, BR-21941909 Rio De Janeiro, Brazil
关键词
Carbon nanotube; Poly(3-hexylthiophene); Hybrid; Decomposition; Vyazovkin methods; Artificial neural network; WALLED CARBON NANOTUBES; SOLID-STATE REACTIONS; PARAMETERS DETERMINATION; ACTIVATION-ENERGY; COMPUTATIONS; POLYANILINE; COMPOSITE; MODEL;
D O I
10.1016/j.tca.2019.03.040
中图分类号
O414.1 [热力学];
学科分类号
摘要
Development of new hybrid multi-walled carbon nanotubes (MWCNT) and conducting polymer has been studied due to these materials versatility. The knowledge of thermal properties is essential to evaluate the hybrids applicability, mainly in optoelectronic devices. In this work, chemical modifications was performed on the surface of MWCNT through microwave reaction, due to a shorter reaction time, less use of organic solvents and thionyl chloride free (high toxicity reagent). Subsequently, a new hybrid MWCNT@P3HT was obtained by in situ polymerization of poly (3-hexylthiophene) in the modified MWCNT, covalently linked. Kinetic study of thermal degradation was performed employing artificial neural network and isoconversional treatment, Friedman (FR) and Vyazovkin methods. The activation energies of MWCNT and MWCNT@P3HT thermal decomposition were determined and showed a significant increase in thermal stability for the hybrid. The activation energy for the MWCNT@P3HT is almost four times greater than the pure one, around 454.9 kJ mo1(-1).
引用
收藏
页码:145 / 154
页数:10
相关论文
共 70 条
[1]   Thermal property of regioregular poly(3-hexylthiophene)/nanotube composites using modified single-walled carbon nanotubes via ion irradiation [J].
Adhikari, A. R. ;
Huang, M. ;
Bakhru, H. ;
Chipara, M. ;
Ryu, C. Y. ;
Ajayan, P. M. .
NANOTECHNOLOGY, 2006, 17 (24) :5947-5953
[2]  
Akahira T., 1971, RES REPORT CHIBA I T, V16, P22, DOI DOI 10.1021/I200014A015
[3]  
Allaedini G., 2015, INT J MAT, V2, P48
[4]   Poly(3-hexylthiophene)-multi-walled carbon nanotube (1:1) hybrids: Structure and electrochemical properties [J].
Alves, Ana Paula P. ;
Trigueiro, Joao Paulo C. ;
Calado, Hallen D. R. ;
Silva, Glaura G. .
ELECTROCHIMICA ACTA, 2016, 209 :111-120
[5]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[6]   Molecular Dynamics Simulation of Poly(3-Hexylthiophene) Helical Structure In Vacuo and in Amorphous Polymer Surrounding [J].
Borzdun, Natalia I. ;
Larin, Sergey V. ;
Falkovich, Stanislav G. ;
Nazarychev, Victor M. ;
Volgin, Igor V. ;
Yakimansky, Alexander V. ;
Lyulin, Alexey V. ;
Negi, Vikas ;
Bobbert, Peter A. ;
Lyulin, Sergey V. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2016, 54 (23) :2448-2456
[7]   Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants [J].
Bradley, D. ;
Williams, G. ;
Lawton, Michelle .
JOURNAL OF ORGANIC CHEMISTRY, 2010, 75 (24) :8351-8354
[8]   Thermal behaviour and isothermal kinetics of rhodium(II) acetate [J].
Braga, MM ;
Yoshida, MI ;
Sinisterra, RD ;
Carvalho, CF .
THERMOCHIMICA ACTA, 1997, 296 (1-2) :141-148
[9]   Synthesis and electrochemical and optical characterization of poly(3-octadecylthiophene) [J].
Calado, Hallen D. R. ;
Matencio, Tulio ;
Donnici, Claudio L. ;
Cury, Luiz A. ;
Rieumont, Jacques ;
Pernaut, Jean-M. .
SYNTHETIC METALS, 2008, 158 (21-24) :1037-1042
[10]   KINETIC MODEL FOR SOLID-STATE REACTIONS [J].
CARTER, RE .
JOURNAL OF CHEMICAL PHYSICS, 1961, 34 (06) :2010-&