Bi-Sobolev mappings and elliptic equations in the plane

被引:38
作者
Hencl, S. [2 ]
Moscariello, G. [1 ]
di Napoli, A. Passarelli [1 ]
Sbordone, C. [1 ]
机构
[1] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Charles Univ Prague, Dept Math Anal, Prague 18600 8, Czech Republic
关键词
Sobolev mapping; Mapping of finite distortion; FINITE DISTORTION; HOMEOMORPHISMS; REGULARITY; INVERSE;
D O I
10.1016/j.jmaa.2009.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that f = (u, v) is a homeomorphism in the plane of the Sobolev class W-loc(1,1) such that its inverse is of the same Sobolev class. We prove that u and v have the same set of critical points. As an application we show that u and v are distributional solutions to the same non-trivial degenerate elliptic equation in divergence form. We study similar properties also in higher dimensions. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:22 / 32
页数:11
相关论文
共 27 条
[1]   ELLIPTIC-EQUATIONS IN DIVERGENCE FORM, GEOMETRIC CRITICAL-POINTS OF SOLUTIONS, AND STEKLOFF EIGENFUNCTIONS [J].
ALESSANDRINI, G ;
MAGNANINI, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (05) :1259-1268
[2]  
[Anonymous], 1971, LECT N DIMENSIONAL Q
[3]   Extremal mappings of finite distortion [J].
Astala, K. ;
Iwaniec, T. ;
Martin, G. J. ;
Onninen, J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :655-702
[4]  
ASTALA K, PRINCETON M IN PRESS
[5]  
Bers L., 1955, CONV INT EQ LIN DER, P141
[6]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[7]  
Boyarsky B. V., 1957, MAT SBORNIK, V43, P451
[8]  
Caccioppoli R., 1952, REND ACCAD NAZ LINCE, V13, P197
[9]  
CSORNYEI M, 2007, HOMEOMORPHISMS SOBOL
[10]  
FEDERER H, 1996, GRUNDLEHREN MATH WIS, V153