On-Chip Chiral Nanophotonic Devices Based on Semiconductor Quantum Dots

被引:5
|
作者
Xiao Shan [1 ,2 ,3 ]
Xu Xiulai [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
关键词
quantum optics; quantum clots; chirality; nanophotonic devices; integrated optics; STRANSKI-KRASTANOW GROWTH; APODIZED GRATING COUPLER; SINGLE-HOLE SPIN; WAVE-GUIDE; ION-TRAP; INFORMATION; MANIPULATION; EMITTER; SHAPE; SIZE;
D O I
10.3788/AOS202242.0327009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Chiral quantum optics has received extensive attention in the field of quantum information technology, which mainly studies the spin-dependent chiral coupling and transmission behavior of light in micro and nano structures. The interaction between chiral light and matter can enhance the coupling between photons and quantum emitters and endow nano-photonic devices with new functions and applications, thus promoting the large-scale application of chiral quantum optics in the field of quantum information. In this paper, the on-chip chiral nano-photon devices based on semiconductor quantum dots arc reviewed, with emphasis on the optical properties of semiconductor quantum dots and the physical mechanism of the interaction between chiral light and matter. On this basis, the multi-functional chiral photon devices realized by chiral coupling principle in recent years arc summarized, and the future application scenes of chiral quantum optics arc prospected.
引用
收藏
页数:12
相关论文
共 107 条
  • [1] Surface exchange and shape transitions of PbSe quantum dots during overgrowth
    Abtin, L.
    Springholz, G.
    Holy, V.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [2] Spin Angular Momentum of Guided Light Induced by Transverse Confinement and Intrinsic Helicity
    Abujetas, Diego R.
    Sanchez-Gil, Jose A.
    [J]. ACS PHOTONICS, 2020, 7 (02): : 534 - 545
  • [3] Entangled photon pairs from semiconductor quantum dots
    Akopian, N
    Lindner, NH
    Poem, E
    Berlatzky, Y
    Avron, J
    Gershoni, D
    Gerardot, BD
    Petroff, PM
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (13)
  • [4] Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview
    Arakawa, Yasuhiko
    Holmes, Mark J.
    [J]. APPLIED PHYSICS REVIEWS, 2020, 7 (02)
  • [5] Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/NPHYS2253, 10.1038/nphys2253]
  • [6] Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers
    Bakir, B. Ben
    de Gyves, A. Vazquez
    Orobtchouk, R.
    Lyan, P.
    Porzier, C.
    Roman, A.
    Fedeli, J. -M.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (11) : 739 - 741
  • [7] Quantum information and computation
    Bennett, CH
    DiVincenzo, DP
    [J]. NATURE, 2000, 404 (6775) : 247 - 255
  • [8] Picosecond coherent optical manipulation of a single electron spin in a quantum dot
    Berezovsky, J.
    Mikkelsen, M. H.
    Stoltz, N. G.
    Coldren, L. A.
    Awschalom, D. D.
    [J]. SCIENCE, 2008, 320 (5874) : 349 - 352
  • [9] Entangled macroscopic quantum states in two superconducting qubits
    Berkley, AJ
    Xu, H
    Ramos, RC
    Gubrud, MA
    Strauch, FW
    Johnson, PR
    Anderson, JR
    Dragt, AJ
    Lobb, CJ
    Wellstood, FC
    [J]. SCIENCE, 2003, 300 (5625) : 1548 - 1550
  • [10] Prospects for quantum coherent computation using superconducting electronics
    Bocko, MF
    Herr, AM
    Feldman, MJ
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) : 3638 - 3641