Calculation of some determinants using the s-shifted factorial

被引:24
作者
Normand, JM [1 ]
机构
[1] CEA Saclay, URA 2306, SPM, SPhT,CNRS,DSM,Serv Phys Theor, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 22期
关键词
D O I
10.1088/0305-4470/37/22/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several determinants with gamma functions as elements are evaluated. These kinds of determinants are encountered, for example, in the computation of the probability density of the determinant of random matrices. The s-shifted factorial is defined as a generalization for non-negative integers of the power function, the rising factorial (or Pochammer's symbol) and the falling factorial. It is a special case of a polynomial sequence of the binomial type studied in combinatorics theory. In terms of the gamma function, an extension is defined for negative integers and even complex values. Properties, mainly composition laws and binomial formulae, are given. They ate used to evaluate families of generalized Vandermonde determinants with s-shifted factorials as elements, instead of power functions.
引用
收藏
页码:5737 / 5762
页数:26
相关论文
共 21 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Aigner M, 1980, COMBINATORIAL THEORY
[3]  
[Anonymous], 1999, SEMINAIRE LOTHARINGI
[4]  
Bateman H., 1954, Tables of Integral Transforms, V2
[5]  
BATEMAN H, 1953, HIGH ER TRASCENDENTA, V1
[6]  
Bateman H., 1953, Higher transcendental functions, VII
[7]  
Blasiak P., 2003, ANN COMB, V7, P127
[8]  
COMTET L, 1970, ANAL COMBINATOIRE 1
[9]   Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble [J].
Delannay, R ;
Le Caër, G .
PHYSICAL REVIEW E, 2000, 62 (02) :1526-1536
[10]  
Gradshteyn Izrail Solomonovich, 2014, Table of Integrals, Series, andProducts, VEighth